Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T13:13:49.389Z Has data issue: false hasContentIssue false

The effect of post-annealing on laser-deposited superconducting Bi–Sr–Ca–Cu–O thin films

Published online by Cambridge University Press:  03 March 2011

P.J. Kung
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
X.D. Wu
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R.E. Muenchausen
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
K.V. Salazar
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S.R. Foltyn
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D.E. Peterson
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A.R. Garcia
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Superconducting Bi–Sr–Ca–Cu–O thin films were obtained from post-annealing partially crystallized and amorphous films grown on MgO(100) by pulsed laser deposition. The substrate temperature investigated was in the range of 350–750 °C, over a range of pressure 0.1 to 100 mTorr. The as-deposited films were annealed in 7.5 vol.% O2/Ar or in air at 800–865 °C from several minutes to a few hours. Unlike the pure Bi2Sr2CaCu2O8+δ (2212) phase (Tc = 80 K) which is easily formed after a long continuous period of post-annealing at a temperature below 830 °C, the formation of (Bi, Pb)2Sr2Ca2Cu3O10+δ (2223) phase from the as-deposited amorphous films requires repetitive annealing cycles of short duration in air at 850 °C to simultaneously achieve good crystal quality, small surface roughness, and sharp diamagnetic transition (Tc = 110 K). After annealing, the temperature is lowered down to ∼650 °C by quenching in air and then a slow-cooling step is employed. This procedure was found to enhance the volume fraction of the 2223 phase as compared with a direct slow-cooling process. The trade-off between annealing temperature and time was observed to affect the phase formation and the smoothness of the annealed films. To optimize the post-annealing conditions, Rutherford backscattering spectrometry, x-ray diffraction, and scanning electron microscopy were systematically used to examine the composition, structure, and morphology of the films, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mei, Y., Luo, H. L., and Hu, R., Appl. Phys. Lett. 56, 581 (1990).CrossRefGoogle Scholar
2Shi, D., Salem, S. Jr., Wang, Z., Goodrich, L. F., Dou, S. X., Liu, H. K., Guo, Y. C., and Sorrell, C. C., Appl. Phys. Lett. 59, 3171 (1991).Google Scholar
3Fujita, J., Yoshitake, T., Igarashi, H., and Satoh, T., Appl. Phys. Lett. 56, 295 (1990).CrossRefGoogle Scholar
4Ogihara, M., Abe, H., and Yamada, T., Jpn. J. Appl. Phys. 30, L703 (1991).CrossRefGoogle Scholar
5Kanai, M., Kawai, T., Kawai, M., and Kawai, S., Jpn. J. Appl. Phys. 27, L1293 (1988).CrossRefGoogle Scholar
6Sugimoto, T., Yoshida, M., Yuhya, S., Baar, D. J., Shiohara, Y., and Tanaka, S., J. Appl. Phys. 70, 1600 (1991).Google Scholar
7Schmitt, P., Schultz, L., and Saemann-Ischenko, G., Physica C 168, 475 (1990).CrossRefGoogle Scholar
8Narumi, E., Lee, J., Li, C., Hosokawa, S., Patel, S., and Shaw, D. T., Appl. Phys. Lett. 59, 3180 (1991).CrossRefGoogle Scholar
9Endo, K., Yamasaki, H., Misawa, S., Yoshida, S., and Kajimura, K., Nature 355, 327 (1992).Google Scholar
10Jedamzik, D., Barnard, B. R., Harrison, M. R., Freeman, W. G., and Howard, P. J., Appl. Phys. Lett. 56, 1371 (1990).Google Scholar
11Hayakawa, H., Kaise, M., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 28, L967 (1989).CrossRefGoogle Scholar
12Hasebe, T., Tanaka, Y., Yanagiya, T., Asano, T., Fukutomi, M., and Maeda, H., Jpn. J. Appl. Phys. 31, L21 (1992).CrossRefGoogle Scholar
13Hayashi, Y., Kogure, H., and Gondo, Y., Jpn. J. Appl. Phys. 28, L2182 (1989).Google Scholar
14Uzumaki, T., Yamanaka, K., Kamehara, N., and Niwa, K., Jpn. J. Appl. Phys. 28, L75 (1989).CrossRefGoogle Scholar
15Sarkar, A. K., Maartense, I., and Peterson, T. L., J. Mater. Res. 7, 1672 (1992).CrossRefGoogle Scholar
16Tabata, H., Kawai, T., Kanai, M., Murata, O., and Kawai, S., Jpn. J. Appl. Phys. 28, L430 (1989).CrossRefGoogle Scholar
17Shiloh, M., Wood, I., Brown, M., Beech, F., and Boyd, I. W., J. Appl. Phys. 68, 2304 (1990).CrossRefGoogle Scholar
18Idemoto, Y., Ichikawa, S., and Fueki, K., Physica C 181, 171 (1991).CrossRefGoogle Scholar
19Asano, T., Tanaka, Y., Fukutomi, M., Jikihara, K., Machida, J., and Maeda, H., Jpn. J. Appl. Phys. 27, L1652 (1988).Google Scholar
20Pierre, L., Schneck, J., Morin, D., Tolédano, J. C., Primot, J., Daguet, C., and Savary, H., J. Appl. Phys. 68, 2296 (1990).CrossRefGoogle Scholar
21Nobumasa, H., Shimizu, K., Kitano, Y., and Kawai, T., Jpn. J. Appl. Phys. 27, L816 (1988).CrossRefGoogle Scholar
22Seemann, R., Hänisch, F., Sewing, A., Johnson, R. J., de Reus, R., and Nielsen, M., Physica C 199, 112 (1992).CrossRefGoogle Scholar
23Lin, S. L., Tien, C., Chin, T. S., Huang, T. W., and Hung, M. P., Jpn. J. Appl. Phys. 29, L775 (1990).CrossRefGoogle Scholar
24Matsushima, T., Hirochi, K., Adachi, H., Setsune, K., and Wasa, K., Jpn. J. Appl. Phys. 28, L97 (1989).Google Scholar
25Lee, K. and Park, G., Appl. Phys. Lett. 58, 1100 (1991).CrossRefGoogle Scholar
26Hayakawa, H., Nakamura, K., Ikeda, S., Ogawa, K., and Takahashi, S., Jpn. J. Appl. Phys. 29, L943 (1990).Google Scholar
27Hattori, H., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 29, L36 (1990).Google Scholar
28Kohiki, S., Hirochi, K., Adachi, H., Setsune, K., and Wasa, K., Phys. Rev. B 39, 4695 (1989).CrossRefGoogle Scholar
29Wang, Y. H., Li, L., Zhang, Y. Z., Zhao, Y. Y., and Xu, P., Cryogenics 31, 439 (1991).Google Scholar
30Hakuraku, Y., Kawano, I., Higo, S., and Ogushi, T., Supercond. Sci. Technol. 3, 510 (1990).CrossRefGoogle Scholar
31Tarascon, J. M. and Bagley, B. G., Mater. Res. Soc. Bull. XIV, 53 (1989).CrossRefGoogle Scholar