Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T07:18:34.891Z Has data issue: false hasContentIssue false

Effect of phase separation in metal carboxylate gels on perovskite lead magnesium niobate crystallization

Published online by Cambridge University Press:  31 January 2011

Yeshwanth Narendar
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802–4801
Gary L. Messing
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802–4801
Get access

Abstract

Phase separation during the synthesis and decomposition of lead magnesium niobate (PMN)–ethylenediaminetetraacetic acid (EDTA) and PMN–citrate gels strongly affects perovskite Pb(Mg1/3Nb2/3)O3 phase formation. The PMN–EDTA gel was synthesized from a solution containing Pb–EDTA, Mg–EDTA, and peroxo–citrato–niobium complexes at pH 8. Pb–EDTA precipitation was avoided by using Pb:EDTA in the mole ratio >1:2.5 and flash pyrolyzing the PMN–EDTA solution at 225 °C. Consequently, the PMN yield increased from 80 to 98 wt%. The sequential decomposition of Pb–EDTA, Mg–EDTA, and peroxo–citrato–Nb in the PMN–EDTA precursor in 1 vol% O2 leads to phase separation of Pb and PbO and thus lowers the PMN yield to 92 wt%. At PO2 > 2.5 vol% the Pb, Mg, and Nb complexes cothermolyze to form ≥97 % perovskite PMN. The presence of a heterometallic citrato–Pb–Mg–Nb complex in PMN–citrate leads to oxygen partial pressure independent codecomposition of the Pb, Mg, and Nb complexes. Accordingly, PMN yields of ≥96 wt% were obtained from the PMN–citrate precursor for oxygen partial pressures between 1 and 5 vol%.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Courty, P.H., Ajot, H., Marcilly, C.H., and Delmon, B., Powder Tech. 7, 21 (1973).Google Scholar
2.Admaiai, L.F., Grange, P., Delmon, B., Cassart, M., and Issi, J.P., J. Mater Sci. 29, 5817 (1994).CrossRefGoogle Scholar
3.Catania, P., Hovnanian, N., and Cot, L., Eur. J. Solid State Chem. 27, 659 (1990).Google Scholar
4.Rao, G.V.R, Narayana, D.S.S, Varadaraju, U.V., Rao, G.V.N, and Venkatesan, S., J. Alloys Compd. 217, 200 (1995).Google Scholar
5.Anderton, D.J. and Sale, F.R., Powder Technol. 1, 14 (1979).Google Scholar
6.Kakihana, M., J. Sol-Gel Sci. Technol. 6, 7 (1996).CrossRefGoogle Scholar
7.Wang, H-W., Hall, D.A., and Sale, F.R., J. Am. Ceram. Soc. 75, 124 (1992).Google Scholar
8.Chu, C-T. and Dunn, B., J. Am. Ceram. Soc. 70, C375 (1987).CrossRefGoogle Scholar
9.Blank, D.H.A, Kuridhof, H., and Flokstra, J., J. Phys. D. 21, 226 (1988).CrossRefGoogle Scholar
10.Bobtelsky, M. and Graus, B., J. Am. Chem. Soc. 75, 4172 (1953).CrossRefGoogle Scholar
11.Stezowski, J.J., Countryman, R., and Hoard, J.L., Inorg. Chem. 12, 1749 (1973).Google Scholar
12.Karen, P. and Kjekshus, A., J. Am. Ceram. Soc. 77, 547 (1994).CrossRefGoogle Scholar
13.Zhuang, H., Kozuka, H., and Sakka, S., J. Mater. Sci. 25, 4762 (1990).CrossRefGoogle Scholar
14.Narendar, Y. and Messing, G.L., Catal. Today 35, 247 (1997).Google Scholar
15.Tolochko, S.P., Kononyuk, I.F., Lyutsko, V., Vershel, E., and Lyakhou, A., Russ. J. Inorg. Chem. 36, 275 (1991).Google Scholar
16.Aiko, A., Ohno, S., and Muramatsu, Y., J. Non-Cryst. Solids 147, 148, 720 (1992).Google Scholar
17.Gopalakrishnamurthy, H.S., Rao, M.S., and Kutty, T.R.N, J. Inorg. Nucl. Chem. 37, 891 (1975).CrossRefGoogle Scholar
18.Devi, P.S. and Rao, M.S., Thermochim. Acta. 15, 181 (1989).Google Scholar
19.Cross, L.E., Ferroelectrics. 76, 241 (1987).Google Scholar
20.Swartz, S.L., Shrout, T.R., Schulze, W.A., and Cross, L.E., J. Am. Ceram. Soc. 67, 311 (1984).Google Scholar
21.Bonner, W.A., Dearborn, E.F., Geusic, J.E., Marcos, H.M., and Van Uitert, L.G., Appl. Phys. Lett. 10, 163 (1967).Google Scholar
22.Choy, J-H., Yoo, J-S., Kang, S-G., Hong, S-T., and Kim, D-G., Mater Res. Bull. 25, 283 (1990).CrossRefGoogle Scholar
23.Anderson, H.U., Pennell, M.J., and Guha, J.P., Advances in Ceramics (American Ceramic Society, Westerville, OH, 1987), Vol. 21, p. 91.Google Scholar
24.Narendar, Y. and Messing, G.L., Chem. Mater. 9, 580 (1997).CrossRefGoogle Scholar
25.Narendar, Y. and Messing, G.L., J. Am. Ceram. Soc. 80, 915 (1996).CrossRefGoogle Scholar
26.Narendar, Y., Ph.D. Dissertation, The Pennsylvania State University, University Park, PA (1996).Google Scholar
27.Horey, J.K. and Tremaine, P.R., J. Phys. Chem. 89, 5546 (1985).Google Scholar
28.Dudzinska, M.R. and Clifford, D.A., React. Polym. 16, 71 (1991/1992).CrossRefGoogle Scholar
29.Harrison, P.G. and Steel, A.T., J. Organomet. Chem. 239, 105 (1982).Google Scholar
30.Polli, A.D., Lange, F.F., Levi, C.G., and Mayer, J., J. Am. Ceram. Soc. 79, 1745 (1996).Google Scholar
31.Ekstrom, L-G. and Olin, A., Chem. Scr. 13, 10 (19781979).Google Scholar
32.Blaquiere, C. and Berthon, G., Inorg. Chim. Acta. 135, 179 (1987).CrossRefGoogle Scholar
33.Harris, D.C., Quantitative Chemical Analysis, 2nd ed. (W.H. Freeman Inc., San Francisco, CA, 1982).Google Scholar
34.Kochman, E.D., Suleimanoy, F.M., and Safin, R. Sh., Russ. J. Inorg. Chem. 20, 726 (1975).Google Scholar
35.Hartley, D.W., Smith, G., Sagatys, D.S., and Kennard, C.H.L, J. Chem. Soc., Dalton Trans. 10, 2735 (1991).Google Scholar
36.Francis, A.J., Dodge, C.J., and Gillow, J.B., Nature. 356, 140 (1992).Google Scholar
37.Sankaranarayanan, V.K. and Gajbhiye, N.S., Thermochin. Acta. 153, 337 (1989).CrossRefGoogle Scholar
38.Chaput, F., Boilot, J-P., Lejeune, M., Papiernik, R., and Hubert-Pfalzgraf, L.G., J. Am. Ceram. Soc. 72, 1335 (1989).CrossRefGoogle Scholar
39.Yamaguchi, O. and Mukaida, Y., J. Am. Ceram. Soc. 73, 1705 (1990).CrossRefGoogle Scholar
40.Ling, H.C., Yan, M.F., and Rhodes, W.W., J. Mater. Sci. 24, 541 (1989).Google Scholar
41.Aleshin, E. and Roy, R., J. Am. Ceram. Soc. 45, 18 (1962).Google Scholar
42.Narendar, Y. and Messing, G.L., J. Am. Ceram. Soc. 82, 1659 (1999).Google Scholar
43.Applegate, D.S., M.S. Thesis, The Pennsylvania State University, University Park, PA (1991).Google Scholar
44.Bouquin, O., Lejeune, M., and Boilot, J-P., J. Am. Ceram. Soc. 74, 1152 (1991).Google Scholar