Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T12:13:58.576Z Has data issue: false hasContentIssue false

Effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy

Published online by Cambridge University Press:  11 February 2019

Yuxian Meng
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
Hong Gao*
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
Jiaqi Hu
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
Lilan Gao*
Affiliation:
School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300191, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

To understand the effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy, electrochemical tests, viz., electrochemical impedance spectroscopy (EIS) and fatigue tests, were carried out in PBS (phosphate buffered saline) solutions of pH 5.2, 7.4, and 9.0. The microstructure was investigated by scanning electron microscopy (SEM). Results are as follows: (i) the corrosion mechanism of AM60 under different pH values was different according to EIS; (ii) the corrosion resistance and corrosion fatigue life reduced in the following order: pH 9.0 > pH 7.4 > pH 5.2; (iii) the crack initiation was associated with hydrogen embrittlement of AM60 on the basis of fractographic analysis.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zeng, R.C., Dietzel, W., Witte, F., Hort, N., and Blawert, C.: Progress and challenge for magnesium alloys as biomaterials. Adv. Eng. Mater. 10, B3 (2008).CrossRefGoogle Scholar
Lin, Y.C., Chen, X.M., and Chen, G.: Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation. J. Alloys Compd. 509, 6838 (2011).CrossRefGoogle Scholar
Shi, Z.M., Liu, M., and Atrens, A.: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52, 579 (2010).CrossRefGoogle Scholar
Atrens, A., Johnston, S., Shi, Z.M., and Dargusch, M.: Viewpoint—Understanding Mg corrosion in the body for biodegradable medical implants. Scr. Mater. 154, 92 (2018).CrossRefGoogle Scholar
Atrens, A., Song, G.L., Cao, F.Y., Shi, Z.M., and Bowen, P.: Advances in Mg corrosion and research suggestions. J. Magnesium Alloys 1, 177 (2013).CrossRefGoogle Scholar
Zhao, J., Gao, L.L., Gao, H., Yuan, X., and Chen, X.: Biodegradable behaviour and fatigue life of ZEK100 magnesium alloy in simulated physiological environment. Fatigue Fract. Eng. Mater. Struct. 38, 904 (2015).CrossRefGoogle Scholar
Staiger, M.P., Pietak, A.M., and Huadmai, J.: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728 (2006).CrossRefGoogle ScholarPubMed
Raman, R.K.S. and Harandi, S.E.: Resistance of magnesium alloys to corrosion fatigue for biodegradable implant applications: Current status and challenges. Materials 10, 1316 (2017).CrossRefGoogle ScholarPubMed
Bian, D., Zhou, W.R., Liu, Y., Li, N., Zheng, Y.F., and Sun, Z.L.: Fatigue behaviors of HP-Mg, Mg–Ca, and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomater. 41, 351 (2016).CrossRefGoogle ScholarPubMed
Choudhary, L. and Raman, R.K.S.: Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomater. 8, 916 (2012).CrossRefGoogle Scholar
Raman, R.K.S., Jafari, S., and Harandi, S.E.: Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review. Eng. Fract. Mech. 137, 97 (2015).CrossRefGoogle Scholar
Song, G.L. and Atrens, A.: Understanding magnesium corrosion mechanism: A framework for improved alloy performance. Adv. Eng. Mater. 5, 837 (2003).CrossRefGoogle Scholar
Atrens, A., Song, G.L., Liu, M., Shi, Z., Cao, F., and Dargusch, M.S.: Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 17, 400 (2015).CrossRefGoogle Scholar
Song, G.L. and Atrens, A.: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11 (1999).3.0.CO;2-N>CrossRefGoogle Scholar
Gu, X.N., Zhou, W.R., and Zheng, Y.F.: Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91D and WE43—In simulated body fluid. Acta Biomater. 6, 4605 (2010).CrossRefGoogle Scholar
Jafari, S., Raman, R.K.S., and Davies, C.H.J.: Corrosion fatigue of a magnesium alloy in modified simulated body fluid. Eng. Fract. Mech. 137, 2 (2015).CrossRefGoogle Scholar
Jafari, S., Raman, R.K.S., and Davies, C.H.J.: Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment. J. Mech. Behav. Biomed. Mater. 65, 634 (2017).CrossRefGoogle Scholar
Jafari, S. and Raman, R.K.S.: In vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid. Mater. Sci. Eng., C 78, 278 (2017).CrossRefGoogle ScholarPubMed
Liu, X.Y., Chu, P.K., and Ding, C.X.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng., R 47, 49 (2004).CrossRefGoogle Scholar
Chen, G., Lu, L.T., Cui, Y., Xing, R.S., Gao, H., and Chen, X.: Ratcheting and low-cycle fatigue characterizations of extruded AZ31B Mg alloy with and without corrosive environment. Int. J. Fatigue 80, 364 (2015).CrossRefGoogle Scholar
Liu, C.L., Xin, Y.C., and Tian, X.B.: Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. J. Mater. Res. 22, 1806 (2007).CrossRefGoogle Scholar
Alberti, K.G. and Cuthbert, C.: The hydrogen ion in normal metabolism: A review. Ciba Found. Symp. 87, 1 (1982).Google ScholarPubMed
Ng, W.F., Chiu, K.Y., and Cheng, F.T.: Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater. Sci. Eng., C 30, 898 (2010).CrossRefGoogle Scholar
Johnston, S., Shi, Z.M., and Atrens, A.: The influence of pH on the corrosion rate of high-purity Mg, AZ91, and ZE41 in bicarbonate buffered Hanks’ solution. Corros. Sci. 101, 182 (2015).CrossRefGoogle Scholar
Chen, J., Wang, J., Han, E., Dong, J., and Ke, W.: AC impedance spectroscopy study of the corrosion behaviour of an AZ91 magnesium alloy in 0.1M sodium sulphate solution. Electrochim. Acta 52, 3299 (2007).CrossRefGoogle Scholar
Kannan, M.B. and Raman, R.K.S.: A mechanistic study of in vitro degradation of magnesium alloy using electrochemical techniques. J. Biomed. Mater. Res., Part A 93A, 1050 (2010).Google Scholar
Eliezer, A., Gutman, E.M., Abramov, E., and Unigovski, Y.: Corrosion fatigue of die-cast and extruded magnesium alloys. J. Light Met. 1, 179 (2001).CrossRefGoogle Scholar
Abidin, N., Atrens, A.D., Martin, D., and Atrens, A.: Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41, and AZ91 in Hank’s solution at 37 °C. Corros. Sci. 53, 3542 (2011).CrossRefGoogle Scholar
Shi, Z.M., Jia, J.X., and Atrens, A.: Galvanostatic anodic polarization curves and galvanic corrosion of high purity Mg in 3.5% NaCl saturated with Mg(OH)2. Corros. Sci. 60, 296 (2012).CrossRefGoogle Scholar
Zheng, Y., Li, Y., Chen, J.H., and Zou, Z.Y.: Effects of tensile and compressive deformation on corrosion behaviour of a Mg–Zn alloy. Corros. Sci. 90, 445 (2015).CrossRefGoogle Scholar
Sajuri, Z.B., Miyashita, Y., and Mutoh, Y.: Effects of humidity and temperature on the fatigue behaviour of an extruded AM60 magnesium alloy. Fatigue Fract. Eng. Mater. Struct. 28, 373 (2005).CrossRefGoogle Scholar
Diab, M., Pang, X., and Jahed, H.: The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al–1% Zn) extrusion. Surf. Coat. Technol. 309, 423 (2017).CrossRefGoogle Scholar
Panindre, A.M., Raja, V.S., and Krishnan, M.A.: Explanation for anomalous environmentally assisted cracking behaviour of a wrought Mg–Mn alloy in chloride medium. Corros. Sci. 115, 8 (2017).CrossRefGoogle Scholar
He, M.F., Liu, L., Wu, Y.T., Tang, Z.X., and Hu, W.B.: Corrosion properties of surface-modified AZ91D magnesium alloy. Corros. Sci. 50, 3267 (2008).Google Scholar
Atrens, A. and Dietzel, W.: The negative difference effect and unipositive Mg+. Adv. Eng. Mater. 9, 292 (2007).CrossRefGoogle Scholar
Khan, S.A., Miyashita, Y., Mutoh, Y., and Koike, T.: Fatigue behavior of anodized AM60 magnesium alloy under humid environment. Mater. Sci. Eng., A 498, 377 (2008).CrossRefGoogle Scholar
Khan, S.A., Bhuiyan, M.S., Miyashita, Y., Mutoh, Y., and Koike, T.: Corrosion fatigue behavior of die-cast and shot-blasted AM60 magnesium alloy. Mater. Sci. Eng., A 528, 1961 (2011).CrossRefGoogle Scholar
Maruyama, N., Mori, D., Hiromoto, S., Kanazawa, K., and Nakamura, M.: Fatigue strength of 316L-type stainless steel in simulated body fluids. Corros. Sci. 53, 2222 (2011).CrossRefGoogle Scholar
Kappes, M., Iannuzzi, M., and Carranza, R.M.: Pre-exposure embrittlement and stress corrosion cracking of magnesium alloy AZ31B in chloride solutions. Corrosion 70, 667 (2014).CrossRefGoogle Scholar
Kannan, M.B. and Dietzel, W.: Pitting-induced hydrogen embrittlement of magnesium-aluminium alloy. Mater. Des. 42, 321 (2012).CrossRefGoogle Scholar
Song, R.G., Blawert, C., and Dietzel, W.: A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy. Mater. Sci. Eng., A 308, 399 (2005).Google Scholar
Kappes, M., Iannuzzi, M., and Carranza, R.M.: Hydrogen embrittlement of magnesium and magnesium alloys: A review. J. Electrochem. Soc. 160, C168 (2013).CrossRefGoogle Scholar
Uematsu, Y., Kakiuchi, T., Nakajima, M., Nakamura, Y., Miyazaki, S., and Makino, H.: Fatigue crack propagation of AM60 magnesium alloy under controlled humidity and visualization of hydrogen diffusion along the crack wake. Int. J. Fatigue 59, 234 (2014).CrossRefGoogle Scholar
Kakiuchi, T., Uematsu, Y., Hatano, Y., Nakajima, M., Nakamura, Y., and Taniguchi, T.: Effect of hydrogen on fatigue crack propagation behavior of wrought magnesium alloy AM60 in NaCl solution under controlled cathodic potentials. Eng. Fract. Mech. 137, 88 (2015).CrossRefGoogle Scholar
Jamesh, M.I., Wu, G.S., and Zhao, Y.: Electrochemical corrosion behavior of biodegradable Mg–Y–RE and Mg–Zn–Zr alloys in Ringer’s solution and simulated body fluid. Corros. Sci. 91, 160 (2015).CrossRefGoogle Scholar
Yang, Y., Scenini, F., and Curioni, M.: A study on magnesium corrosion by real-time imaging and electrochemical methods: Relationship between local processes and hydrogen evolution. Electrochim. Acta 198, 174 (2016).CrossRefGoogle Scholar
Zhang, T., Chen, C.M., Shao, Y.W., Meng, G.Z., Wang, F.H., Li, X.G., and Dong, C.F.: Corrosion of pure magnesium under thin electrolyte layers. Electrochim. Acta 53, 7921 (2008).CrossRefGoogle Scholar
Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, London, 1966); ch. IV.Google Scholar
Wang, S.D., Xu, D.K., and Wang, B.J.: Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg–Zn–Y–Zr alloy. Sci. Rep. 6, 29471 (2016).CrossRefGoogle ScholarPubMed
Zhou, L.F., Liu, Z.Y., and Wu, W.: Stress corrosion cracking behavior of ZK60 magnesium alloy under different conditions. Int. J. Hydrogen Energy 42, 26162 (2017).CrossRefGoogle Scholar
Winzer, N., Atrens, A., and Song, G.L.: A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater. 7, 659 (2005).CrossRefGoogle Scholar