Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T11:26:48.830Z Has data issue: false hasContentIssue false

The effect of MoW interlayer thickness on diamond growth on steel substrates

Published online by Cambridge University Press:  03 February 2020

Vojtěch Kundrát
Affiliation:
School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, U.K.
Ruoying Zhang
Affiliation:
School of Engineering, University of Leicester, Leicester LE1 7RH, U.K.
Xiaoling Zhang
Affiliation:
Teer Coatings Ltd., Droitwich WR9 9AS, U.K.
Kevin Cooke
Affiliation:
Teer Coatings Ltd., Droitwich WR9 9AS, U.K.
Hailin Sun
Affiliation:
Teer Coatings Ltd., Droitwich WR9 9AS, U.K.
John Sullivan
Affiliation:
School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, U.K.
Haitao Ye*
Affiliation:
School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, U.K.; and School of Engineering, University of Leicester, Leicester LE1 7RH, U.K.
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This article reports findings when using a molybdenum–tungsten (MoW) interlayer for diamond thin film deposition on steel substrates. The main focus was on the postdeposition stress within the diamond films and its impact on the coating's tribological properties. The effect of MoW interlayer thickness and the effect of chemical vapor deposition (CVD) process temperature have been investigated. Nanocrystalline diamond films were deposited on steel substrates with MoW interlayers (thickness of 1.1, 4.5, and 8.3 μm) at two different deposition temperatures (650 and 875 °C). It was found that when depositing good quality diamond films on steel substrates, increasing interlayer thickness and decreasing CVD process temperature have to be jointly considered to obtain the optimal result. The diamond-coated steel substrates with the 8.3 μm interlayer deposited at the lower CVD processing temperature exhibited the least residual stress combined with excellent mechanical properties.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

García, I., Conde, A., de Damborenea, J.J., and Vázquez, A.J.: Electrochemical behaviour of molybdenum coated with flame CVD polycrystalline diamond film. Thin Solid Films 310, 217221 (1997).CrossRefGoogle Scholar
Wei, Q., Yu, Z.M., Ashfold, M.N.R., Ma, L., and Chen, Z.: Fretting wear and electrochemical corrosion of well-adhered CVD diamond films deposited on steel substrates with a WC–Co interlayer. Diamond Relat. Mater. 19, 11441152 (2010).CrossRefGoogle Scholar
Cappelli, E., Pinzari, F., Ascarelli, P., and Righini, G.: Diamond nucleation and growth on different cutting tool materials: Influence of substrate pre-treatments. Diamond Relat. Mater. 5, 292298 (1996).CrossRefGoogle Scholar
Das, D., Singh, R.N., Chattopadhyay, S., and Chen, K.H.: Thermal conductivity of diamond films deposited at low surface temperatures. J. Mater. Res. 21, 23792388 (2006).CrossRefGoogle Scholar
Ye, H., Sun, C.Q., Hing, P., Xie, H., and Zhang, S.: Nucleation and growth dynamics of diamond films by microwave plasma-enhanced chemical vapor deposition (MPECVD). Surf. Coat. 123, 129133 (2000).CrossRefGoogle Scholar
Buijnsters, J.G., Shankar, P., and ter Meulen, J.J.: Direct deposition of polycrystalline diamond onto steel substrates. Surf. Coat. Technol. 201, 89558960 (2007).CrossRefGoogle Scholar
Weiser, P.S. and Prawer, S.: Chemical vapour deposition of diamond onto iron based substrates—The use of barrier layers. Diamond Relat. Mater. 4, 710713 (1995).CrossRefGoogle Scholar
Ralchenko, V.G., Smolin, A.A., Pereverzev, V.G., Obraztsova, E.D., Korotoushenko, K.G., Konov, V.I., Lakhotkin, Y.V., and Loubnin, E.N.: Diamond deposition on steel with CVD tungsten intermediate layer. Diamond Relat. Mater. 4, 754758 (1995).CrossRefGoogle Scholar
Glozman, O. and Hoffman, A.: Adhesion improvement of diamond films on steel substrates using chromium nitride interlayers. Diamond Relat. Mater. 6, 796801 (1997). Available at: http://www.sciencedirect.com/science/article/pii/S0925963596006711 (accessed July 1, 2013).10.1016/S0925-9635(96)00671-1CrossRefGoogle Scholar
Silva, F.J.G., Fernandes, A.J.S., Costa, F.M., Baptista, A.P.M., and Pereira, E.: A new interlayer approach for CVD diamond coating of steel substrates. Diamond Relat. Mater. 13, 828833 (2004).CrossRefGoogle Scholar
Silva, F.J.G., Baptista, A.P.M., and Pereira, E.: Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers. Diamond Relat. Mater. 11, 16171622 (2002).10.1016/S0925-9635(02)00029-8CrossRefGoogle Scholar
Xiao, X., Sheldon, B.W., Konca, E., Lev, L.C., and Lukitsch, M.J.: The failure mechanism of chromium as the interlayer to enhance the adhesion of nanocrystalline diamond coatings on cemented carbide. Diamond Relat. Mater. 18, 11141117 (2009).CrossRefGoogle Scholar
Fan, Q., Fernandes, A., and Gracio, J.: Diamond coating on steel with a titanium interlayer. Diamond Relat. Mater. 7, 58 (1998). Available at: http://www.sciencedirect.com/science/article/pii/S0925963597002872 (accessed July 1, 2013).CrossRefGoogle Scholar
Spinnewyn, J., Nesládek, M., and Asinari, C.: Diamond nucleation on steel substrates. Diamond Relat. Mater. 2, 361364 (1993). Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0027569326&partnerID=40&md5=42df4d68d51192649dd3c67da8b6c213.CrossRefGoogle Scholar
Laikhtman, A., Rapoport, L., Perfilyev, V., Moshkovich, A., Akhvlediani, R., and Hoffman, A.: Tribological and adhesion properties of CVD diamond films grown on steel with a Cr–N interlayer. AIP Conf. Proc. 157, 157161 (2009).CrossRefGoogle Scholar
Haubner, R. and Lux, B.: Diamond deposition on steel substrates using intermediate layers. Int. J. Refract. Met. Hard Mater. 24, 380386 (2006).CrossRefGoogle Scholar
Schwarz, S., Rosiwal, S.M., Musayev, Y., and Singer, R.F.: High temperature diffusion chromizing as a successful method for CVD-diamond coating of steel—Part II. Diamond Relat. Mater. 12, 701706 (2003).CrossRefGoogle Scholar
Chu, Y.C., Jiang, G., Chang, C., Ting, J.M., Lee, H. L., and Tzeng, Y.: Roomtemperature diamond seeding and microwave plasma enhanced CVD growth of nanodiamond with a tungsten interfacial layer. In 2011 11th IEEE International Conference on Nanotechnology, NANO 2011. [6144477] (Proceedings of the IEEE Conference on Nanotechnology, 2011); pp. 13671370. https://doi.org/10.1109/NANO.2011.6144477.Google Scholar
Chu, Y-C., Tu, C-H., Jiang, G., Chang, C., Liu, C., Ting, J-M., Lee, H-L., Tzeng, Y., and Auciello, O.: Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer. J. Appl. Phys. 111, 124328 (2012).CrossRefGoogle Scholar
Naguib, N.N., Elam, J.W., Birrell, J., Wang, J., Grierson, D.S., Kabius, B., Hiller, J.M., Sumant, A.V., Carpick, R.W., Auciello, O., and Carlisle, J.A.: Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers. Chem. Phys. Lett. 430, 345350 (2006).10.1016/j.cplett.2006.08.137CrossRefGoogle Scholar
Zhang, C.Z., Niakan, H., Yang, L., Li, Y.S., Hu, Y.F., and Yang, Q.: Study of diamond nucleation and growth on Ti6Al4V with tungsten interlayer. Surf. Coat. Technol. 237, 248254 (2013).CrossRefGoogle Scholar
Whitfield, M., Savage, J., and Jackman, R.: Nucleation and growth of diamond films on single crystal and polycrystalline tungsten substrates. Diamond Relat. Mater. 9, 262268 (2000). Available at: http://www.sciencedirect.com/science/article/pii/S0925963500002363 (accessed August 17, 2014).10.1016/S0925-9635(00)00236-3CrossRefGoogle Scholar
Kundrát, V., Zhang, X., Cooke, K., Sun, H., Sullivan, J., and Ye, H.: A novel Mo–W interlayer approach for CVD diamond deposition on steel. AIP Adv. 5, 047130 (2015).CrossRefGoogle Scholar
Zhang, C.Z., Yang, L., Hu, Y.F., Yang, Q., and Niakan, H.: Study of diamond nucleation and growth on Ti6Al4V with tungsten interlayer. Surf. Coat. Technol. 237, 248 (2013).CrossRefGoogle Scholar
Buihnsters, J.G., Escobar Galindo, R., Vázquez, L., and ter Meulen, J.J.: Molybdenum interlayer for nucleation enhancement in diamond CVD growth. J. Nanosci. Nanotechnol. 10, 28852891 (2010).CrossRefGoogle Scholar
Wild, C., Herres, N., and Koidl, P.: Texture formation in polycrystalline diamond films. J. Appl. Phys. 68, 973 (1990).CrossRefGoogle Scholar
Smereka, P., Li, X., Russo, G., and Srolovitz, D.J.: Simulation of faceted film growth in three dimensions: Microstructure, morphology and texture. Acta Mater. 53, 11911204 (2005).10.1016/j.actamat.2004.11.013CrossRefGoogle Scholar
Chen, H-L., Lu, Y-M., and Hwang, W-S.: Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. Mater. Trans. 46, 872879 (2005).CrossRefGoogle Scholar
Fultz, B. and Howe, J.: Diffraction and the X-ray powder diffractometer. In Transmission Electron Microscopy and Diffractometry of Materials SE-1 (Springer, Berlin Heidelberg, 2013); pp. 157.CrossRefGoogle Scholar
Herrmann, K.: Hardness Testing: Principles and Applications (ASM International, Materials Park, Ohio, USA, 2011). Available at: http://app.knovel.com/web/toc.v/cid:kpHTPA0004/viewerType:toc/root_slug:hardness-testing-principles/url_slug:hardness-testing-principles/? (accessed February 14, 2015).Google Scholar
Hutchings, I.M. and Shipway, P.: Tribology: Friction and Wear of Engineering Materials (Elsevier Ltd. Amsterdam, Netherlands 2017).Google Scholar
Xie, Y. and Hawthorne, H.: Effect of contact geometry on the failure modes of thin coatings in the scratch adhesion test. Surf. Coat. Technol. 155, 121129 (2002).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J.: Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405 (2001).10.1103/PhysRevB.63.121405CrossRefGoogle Scholar
Williams, O.A., Kriele, A., Hees, J., Wolfer, M., Müller-Sebert, W., and Nebel, C.E.: High Young's modulus in ultra thin nanocrystalline diamond. Chem. Phys. Lett. 495, 8489 (2010).CrossRefGoogle Scholar
Ager, J.W. and Drory, M.D.: Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapor deposition. Phys. Rev. B 48, 26012607 (1993). Available at: http://prb.aps.org/abstract/PRB/v48/i4/p2601_1 (accessed July 22, 2013).CrossRefGoogle ScholarPubMed
Ali, N., Fan, Q.H., Gracio, J., Pereira, E., and Ahmed, W.: A comparison study of diamond adhesion on ductile metals. Thin Solid Films 377–378, 193197 (2000). Available at: http://www.sciencedirect.com/science/article/pii/S0040609000012967 (accessed November 2, 2012).CrossRefGoogle Scholar
Nagl, M.M. and Evans, W.T.: The mechanical failure of oxide scales under tensile or compressive load. J. Mater. Sci. 28, 62476260 (1993).CrossRefGoogle Scholar
Slack, G.A. and Bartram, S.F.F.: Thermal expansion of some diamond like crystals. J. Appl. Phys. 46, 8998 (1975).CrossRefGoogle Scholar
Böhler: Böhler S500 material data steet (2008). Available at: http://www.bohler-edelstahl.com/english/files/S500DE.pdf.Google Scholar
Mohr, M., Caron, A., Herbeck-Engel, P., Bennewitz, R., Gluche, P., Brühne, K., and Fecht, H-J.: Young's modulus, fracture strength, and Poisson's ratio of nanocrystalline diamond films. J. Appl. Phys. 116, 124308 (2014).CrossRefGoogle Scholar
Philip, J., Hess, P., Feygelson, T., Butler, J.E., Chattopadhyay, S., Chen, K.H., and Chen, L.C.: Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 93, 21642171 (2003).CrossRefGoogle Scholar
Sermeus, J., Verstraeten, B., Salenbien, R., Pobedinskas, P., Haenen, K., and Glorieux, C.: Determination of elastic and thermal properties of a thin nanocrystalline diamond coating using all-optical methods. Thin Solid Films 590, 284292 (2015).CrossRefGoogle Scholar
Tanei, H., Tanigaki, K., Kusakabe, K., Ogi, H., Nakamura, N., and Hirao, M.: Stacking-fault structure explains unusual elasticity of nanocrystalline diamonds. Appl. Phys. Lett. 94, 041914 (2009).CrossRefGoogle Scholar
Bareiß, C., Perle, M., Rosiwal, S.M., and Singer, R.F.: Diamond coating of steel at high temperatures in hot filament chemical vapour deposition (HFCVD) employing chromium interlayers. Diamond Relat. Mater. 15, 754760 (2006).Google Scholar
Buijnsters, J.G., Shankar, P., Fleischer, W., van Enckevort, W.J.P., Schermer, J.J., and ter Meulen, J.J.: CVD diamond deposition on steel using arc-plated chromium nitride interlayers. Diamond Relat. Mater. 11, 536544 (2002).CrossRefGoogle Scholar