Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T08:58:33.731Z Has data issue: false hasContentIssue false

Effect of mechanically activated raw materials on β-sialon formation by combustion synthesis

Published online by Cambridge University Press:  31 January 2011

Ramasamy Sivakumar*
Affiliation:
Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628, Japan
Kazuhiko Aoyagi
Affiliation:
Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628, Japan
Tomohiro Akiyama
Affiliation:
Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The influence of different raw material mixtures on β-sialon (Si6−zAlzOzN8−z, 1 ⩽ z ⩽ 4) formation through mechanical activation coupled combustion synthesis (MA-CS) was investigated in low nitriding atmosphere of 1 MPa without diluent inclusions. The MA-CS performed for the first time on sialon raw materials with milling time of 18 min obtained sialons more than three times as pure as those obtained by CS of mixtures ball milled to 1 h (z = 3). The starting materials containing silicon, aluminum, and alumina (z = 4) after MA-CS had an increment of sialon amounts up to 88 mass%.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jack, K.H.: Review: Sialons and related nitrogen ceramics. J. Mater. Sci. 11, 1135 1976CrossRefGoogle Scholar
2Ekstrom, T.Nygren, M.: SiAlON ceramics. J. Am. Ceram. Soc. 75, 259 1992CrossRefGoogle Scholar
3Wills, R.R., Stewart, R.W.Wimmer, J.M.: Intrinsic thermal and mechanical properties of reaction-sintered Si4Al2N6O2 sialon. Am. Ceram. Soc. Bull. 55, 975 1976Google Scholar
4Ekstrom, T., Kall, P.O., Nygren, M.Olsson, P.O.: Dense single-phase β-sialon ceramics by glass-encapsulated HIP technique. J. Mater. Sci. 24, 1853 1989CrossRefGoogle Scholar
5Zhang, H.J.Zhong, X.C.: Synthesis of beta-SiAlON by reaction sintering. J. Am. Ceram. Bull. 82(8), 9701 2003Google Scholar
6Tesseir, P., Alamdari, H.D., Dubuc, R.Boily, S.: Nanocrystalline β-sialon by reactive sintering of a SiO2–AlN mixture subjected to high-energy ball milling. J. Alloy. Comp. 391, 225 2005CrossRefGoogle Scholar
7Ramesh, P.D.Rao, K.J.: Preparation and characterization of single-phase β-SiAlON. J. Am. Ceram. Soc. 78(2), 395 1995CrossRefGoogle Scholar
8Zeng, J., Miyamoto, Y.Yamada, O.: Combustion synthesis of sialon powders (Si6−zAlzOzN8−z, z = 0.3, 0.6). J. Am. Ceram. Soc. 73(12), 3700 1990CrossRefGoogle Scholar
9Wu, Y., Zhuang, H., Wu, F., Dollimore, D., Zhang, B., Chen, S.Li, W.: Mechanism of the formation of β-Sialon by self-propagating high-temperature synthesis. J. Mater. Res. 13, 166 1998CrossRefGoogle Scholar
10Lis, J., Majorowski, S., Puszynski, J.A.Hlavacek, V.: Dense β- and α/β-SiAlON materials by pressureless sintering of combustion-synthesized powders. J. Am. Ceram. Bull. 70(10), 1658 1991Google Scholar
11Fu, R.L., Chen, K.X.Ferreira, J.M.F.: Combustion synthesis of β-SiAlON whiskers. Key Eng. Mater. 280–283, 1241 2005Google Scholar
12Shi, G.Y., Wang, H.Z., Wu, F.Y.Zhuang, H.R.: Self-propagating high-temperature synthesis of Y–alpha/beta-sialon powders. J. Adv. Mater. 32(3), 12 2000Google Scholar
13Aoyagi, K., Hiraki, T., Sivakumar, R., Watanabe, T.Akiyama, T.: Mechanically activated combustion synthesis of β-Si6−zAlzOzN8−z (z = 1–4). J. Am. Ceram. Soc. 90(2), 626 2007CrossRefGoogle Scholar
14Gras, C., Charlot, F., Gaffet, E., Bernard, F.Niepce, J.C.: In situ synchrotron characterization of mechanically activated self-propagating high-temperature synthesis applied in Mo–Si system. Acta Mater. 47, 2113 1999CrossRefGoogle Scholar
15Charlot, F., Bernard, F., Gaffet, E., Klein, D.Niepce, J.C.: In situ time-resolved diffraction coupled with a thermal I.R. camera to study mechanically activated SHS reaction: Case of Fe–Al binary system. Acta Mater. 47, 619 1999CrossRefGoogle Scholar
16Gauthier, V., Josse, C., Bernard, F., Gaffet, E.Larpin, J.P.: Synthesis of niobium aluminides using mechanically activated self-propagating high temperature synthesis and mechanically activated annealing process. Mater. Sci. Eng., A 265, 117 1999CrossRefGoogle Scholar
17Takacs, L.: Self-sustaining reactions induced by ball milling. Prog. Mater. Sci. 47, 355 2002CrossRefGoogle Scholar
18Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 2001CrossRefGoogle Scholar
19Xu, X., Nishimura, T., Hirosaki, N., Xie, R., Yamamoto, Y.Tanaka, H.: Fabrication of β-sialon nanoceramics by high-energy mechanical milling and spark plasma sintering. Nanotechnology 16, 1569 2005CrossRefGoogle Scholar