Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T12:20:39.211Z Has data issue: false hasContentIssue false

The effect of lateral crack growth on the strength of contact flaws in brittle materials

Published online by Cambridge University Press:  31 January 2011

Robert F. Cook
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
David H. Roach
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, Maryland 20899
Get access

Abstract

The effect of lateral cracks on strength controlling contact flaws in brittle materials is examined. Inert strength studies using controlled indentation flaws on a range of ceramic, glass, and single crystal materials reveal significant increases in strength at large contact loads, above the predicted load dependence extrapolated from strength measurements at low indentation loads. The increases are explained by the growth of lateral cracks decohesing the plastic deformation zone associated with the contact from the elastically restraining matrix, thereby reducing the residual stress field driving the strength controlling radial cracks. A strength formulation is developed from indentation fracture mechanics which permits inert strengths to be described over the full range of contact loads. The formulation takes account of the decreased constraint of the plastic deformation zone by lateral crack growth as well as post-contact nonequilibrium growth of the radial cracks. Simple extensions permit the strengths of specimens controlled by impact flaws to be described, as well as those failing under nonequilibrium (fatigue) conditions. The implications for materials evaluation using indentation techniques are discussed and the dangers of unqualified use of strength measurements at large indentation loads pointed out. The work reinforces the conclusion that a full understanding of the residual stress field at dominant contact flaws is necessary to describe the strength of brittle materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Lawn, B. R. and Marshall, D. B., in Fracture Mechanics of Cerumics, edited by Bradt, R. C., Hasselmann, D. P. H., and Lange, F. F. (Plenum, New York, 1978), Vol. 3, pp. 205229.Google Scholar
2Lawn, B. R., Evans, A. G., and Marshall, D. B., J. Am. Ceram. Soc. 63, 574 (1980).Google Scholar
3Marshall, D. B., Lawn, B. R., and Evans, A. G., J. Am. Ceram. Soc. 65, 561 (1982).Google Scholar
4Swain, M. V. and Hagan, J. T., J. Phys. D: Appl. Phys. 9, 2201 (1976).CrossRefGoogle Scholar
5Hagan, J. T. and Swain, M. V., J. Phys. D: Appl. Phys. 11, 2091 (1978).CrossRefGoogle Scholar
6Marshall, D. B. and Lawn, B. R., J. Mater. Sci. 14, 200l (1979).CrossRefGoogle Scholar
7Lawn, B. R., Dabbs, T. P., and Fairbanks, C. J., J. Mater. Sci. 18, 2785 (1983).CrossRefGoogle Scholar
8Gupta, P. K. and Jubb, N. J., J. Am. Ceram. SOC. 64, C-112 (1981).CrossRefGoogle Scholar
9Lawn, B. R., Jakus, K., and Gonzalez, A. C., J. Am. Ceram. Soc. 68, 25 (1985).CrossRefGoogle Scholar
10Marshall, D. U., Lawn, B. R., and Chantikul, P., J. Mater. Sci. 14, 2225 (1979).CrossRefGoogle Scholar
11Mould, R. E., J. Am. Ceram. Soc. 43 160 (1960).CrossRefGoogle Scholar
12Marshall, D. B. and Lawn, B. R., J. Am. Ceram. Soc. 63, 532 (1980).Google Scholar
13Swain, M. V. and Metras, I. C., Glass Tech. 23, 120 (1982).Google Scholar
14Tada, H., Paris, P. C. and Irwin, G. R., The Stress Analysis of Cracks Handbook (Del Research, St. Louis, 1973).Google Scholar
15Wiederhorn, S. M. and Lawn, B. R., J. Am. Ceram. Soc. 62, 66 (1979).Google Scholar
16Cook, R. F., Lawn, B. R., Dabbs, T. P. and Chantikul, P., J. Am. Ceram. Soc. 64, C-121 (1981).CrossRefGoogle Scholar
17Roark, R. J. and Young, W. C., Formulas for Stress and Strain (McGraw-Hill, Japan, 1976).CrossRefGoogle Scholar
18Cook, R. F., Lawn, B. R., and Anstis, G. R., J. Mater. Sci. 17, 1108 (1982).CrossRefGoogle Scholar
19Dabbs, T.P., Lawn, B. R., and Kelly, P. L., Phys. Chem. Glass 23, 58 (1982).Google Scholar
20Marshall, D. B., Evans, A. G., and Nisenholz, Z., J. Am. Ceram. SOC. 66, 580 (1983).Google Scholar
21Fuller, E. R., Lawn, B. R., and Cook, R. F., J. Am. Ccram. Soc. 66, 314 (1983)Google Scholar
22Roach, D. H., MS thesis, Case Western Keserve University, Cleveand, OH (1983).Google Scholar
23Chantikul, P., Anstis, G., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64, 539 (1981)Google Scholar
24Cook, K. F. and Lawn, B. K., J. Am. Ceram. Soc. 66, C-200 (1983).CrossRefGoogle Scholar
25Lawn, B. R., Marshall, D. R., and Chantikul, P., J. Mater. Sci. 16, 1769 (1981).Google Scholar
26Multhopp, H., Cook, R. F. and Lawn, B. R., J. Mater. Sci. Lett. 2, 683 (1983).CrossRefGoogle Scholar
27Cook, R.F. and Lawn, B. R., in Merhodsfor Assessing the Strucrural Reliability of Brittle Materials, edited by Freiman, S. W. and Hudson, C. M. (ASTM STP 844, Philadelphia, 1984), pp. 2242.CrossRefGoogle Scholar
28Lawn, R. R., Freiman, S. W., Raker, T. L., Cobb, D. D., and Gonzales, A. C., J. Am. Ceram. SOC. 67, C-67 (1984).Google Scholar
29Cook, R. F., Lawn, B. R., and Fairbanks, C. I., J. Am. Ceram. SOC. 68, 604 (1985).Google Scholar
30Symonds, R. L., Cook, R. F., and Lawn, B. R., J. Mater. Sci. 18, 1306 (1983).CrossRefGoogle Scholar
31Ritter, J. E., Strzepa, P., Jakus, K., Koscnfeld, L., and Buckman, K. J., J. Am. Ceram. Soc. 67, 769 (1984).Google Scholar
32Dabbs, T. P., Ph.D. thesis, School of Physics, University of New South Wales, Australia (1984).Google Scholar
33Chiang, S. S., Marshall, D. B., and Evans, A. G., in Surfuces and Interfaces in Ceramic and Ceramic-Metal Systems, edited by Pask, J. and Evans, A. G. (Plenum, New York, 1981), pp. 603617.CrossRefGoogle Scholar
34Marshall, D. B. and Evans, A. G., J. Appl. Phys. 56 2632 (1984).CrossRefGoogle Scholar
35Rossington, C., Evans, A. G., Marshall, D. B., and Khun-Ya-kub, R. T., J. Appl. Phys. 56, 2639 (1984).CrossRefGoogle Scholar