Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T13:12:44.015Z Has data issue: false hasContentIssue false

Effect of ion bombardment during the low-mobility growth of metallic superlattices

Published online by Cambridge University Press:  31 January 2011

B. Window
Affiliation:
CSIRO Division of Applied Physics, National Measurement Laboratory, Lindfield, New South Wales 2070, Australia
F. Sharples
Affiliation:
CSIRO Division of Applied Physics, National Measurement Laboratory, Lindfield, New South Wales 2070, Australia
Get access

Abstract

The structure of sputtered Mo/Fe superlattices of periodicities 9 to 30 Å grown at a substrate temperature of 300 K at various pressures and levels of low-energy ion bombardment have been studied using x-ray diffraction. The samples show the growth of an amorphous phase below 17 Å periodicity and a crystalline phase above 21 Å, with mixed phases in between. Limited ion bombardment reduces the coherency in the growth direction in the crystalline phase, while heavy bombardment sufficient to promote significant mixing acts to improve the coherency, but not to the level observed in films with no bombardment. The relative intensities of the average lattice spacing reflection and its most intense satellite give the composition profile change due to the ion mixing. Some ion bombardment of the iron layer markedly improves the reflectance for x-rays at both low and high angles near the Bragg peak due to the average lattice spacing.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schuller, I. K. and Falco, C. M., in Modulated Structures 1979, American Institute of Physics Conference Proceedings No. 53 (American Institute of Physics, New York, 1979), p. 417.Google Scholar
2Schuller, I. K., Phys. Rev. Lett. 44, 4597 (1980).CrossRefGoogle Scholar
3Gyorgy, E. M., McWhan, C. B., Dillon, J. F. Jr , Walker, L. R., and Washzczak, J. V., Phys. Rev. B 25, 6739 (1982).CrossRefGoogle Scholar
4Garcia, P. F. and Suna, A., J. Appl. Phys. 54, 2000 (1983).Google Scholar
5Garcia, P. F., Meinhaldt, A. D., and Suna, A., Appl. Phys. Lett. 47, 178 (1985).Google Scholar
6Endoh, Y., Kawaguchi, K., Hosoito, N., Shinjo, T., Takada, T., Fujii, Y., and Ohnishi, T., J. Phys. Soc. Jpn. 53, 3481 (1984).CrossRefGoogle Scholar
7Jaggi, N. K., Schwartz, L. H., Wong, H. K., and Ketterson, J. B., J. Magn. Magn. Mater. 49, 1 (1985).CrossRefGoogle Scholar
8Kahn, M., Chun, C. S. L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C. M., and Schuller, I. K., Phys. Rev. B 27, 7186 (1987).Google Scholar
9McWhan, D. B., Gurvitch, M., Rowell, I. M., and Walker, L. R., J. Appl. Phys. 54, 3886 (1983).CrossRefGoogle Scholar
10Window, B., J. Appl. Phys. 68, 1080 (1988).CrossRefGoogle Scholar
11Shinjo, T., Kawaguchi, K., Yamamoto, R., Hosoito, N., and Takada, T., Thin Solid Films 125, 273 (1985).CrossRefGoogle Scholar
12Falco, C. M., Bennett, W. R., and Boufelfel, A., Dynamical Phenomena at Surfaces, Interfaces and Superlattices (Springer, New York, 1984).Google Scholar
13Thornton, J. A., Ann. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
14Thornton, J. A., J. Vac. Sci. Technol. A 4, 3059 (1986).CrossRefGoogle Scholar
15Window, B., Sharpies, F., and Savvides, N., J. Vac. Sci. Technol. A (to be published).Google Scholar
16Eltoukhy, A. H. and Greene, J. E., Appl. Phys. Lett. 33, 343 (1978).CrossRefGoogle Scholar
17Eltoukhy, A. H. and Greene, J. E., J. Appl. Phys. 50, 505 (1979).CrossRefGoogle Scholar
18Eltoukhy, A. H. and Greene, J. E., J. Appl. Phys. 51, 4444 (1980).CrossRefGoogle Scholar
19Window, B. and Savvides, N., J. Vac. Sci. Technol. A 4, 196 (1987).Google Scholar
20Window, B. and Sharpies, F., J. Vac. Sci. Technol. A 3, 10 (1985).CrossRefGoogle Scholar
21Eicher, S. and Westwood, W. D., presented at 34th Annual Symposium of the American Vacuum Society, October 1987 (to be published in J. Vac. Sci. Technol. A).Google Scholar
22Chason, E., Kondo, H., Mizoguchi, T., Camarata, R. C., Spalpen, F., Window, B., Dunlop, J., and Day, R. K., Mater. Res. Symp. Proc. 58, 69 (1986).CrossRefGoogle Scholar
11Egami, T. and Waseda, Y., J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
24Liou, S. H. and Chien, C. L., Phys. Rev. B 35, 2443 (1987).CrossRefGoogle Scholar
25Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), 2nd ed.Google Scholar