Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T03:26:43.912Z Has data issue: false hasContentIssue false

Effect of hydrolysis catalyst on the Ti deficiency and crystallite size of sol-gel-TiO2 crystalline phases

Published online by Cambridge University Press:  03 March 2011

Bokhimi A. Morales
Affiliation:
Institute of Physics, National University of Mexico (UNAM), A. P. 20–364, 01000 México D. F., Mexico
O. Novaro
Affiliation:
Institute of Physics, National University of Mexico (UNAM), A. P. 20–364, 01000 México D. F., Mexico
T. López
Affiliation:
Department of Chemistry, Universidad Autónoma Metropolitana-Iztapalapa, A. P. 54–534, 09340 México D. F.
E. Sánchez
Affiliation:
Department of Chemistry, Universidad Autónoma Metropolitana-Iztapalapa, A. P. 54–534, 09340 México D. F.
R. Gómez
Affiliation:
Department of Chemistry, Universidad Autónoma Metropolitana-Iztapalapa, A. P. 54–534, 09340 México D. F.
Get access

Abstract

We prepared sol-gel titania by using different hydrolysis catalysts, and characterized it by x-ray powder diffraction. The structure of the crystalline phases—brookite, anatase, and rutile—in the samples annealed between 70 and 900 °C was refined by using the Rietveld technique. From the refinement we obtained the structure parameters, the concentration of each phase, and their average crystallite size. These quantities and their evolution with temperature depended on the hydrolysis catalyst. Anatase and rutile were deficient in Ti, suggesting that their crystalline structure contained hydrogen atoms, forming OH ions inside. In anatase this deficiency depended on its crystallite size, but it was constant in rutile. When anatase was annealed, it dehydroxylized, producing either crystallitc growing up or its conversion into rutile. From the analysis we also found the conditions for obtaining single-phase samples that could be used as precursors for making up titania single-phase thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wyness, P., Klausner, J.F., Goswami, D. Y., and Schuanze, K. S., Trans. ASME, J. Sol. Energy Eng. 116, 2 (1994).CrossRefGoogle Scholar
2Cristiani, C., Bellotto, M., Forzatti, P., and Bregani, F., J. Mater. Res. 8, 2019 (1993).CrossRefGoogle Scholar
3Yoko, T., Yuasa, A., Kamiya, K., and Sakka, S., J. Electrochem. Soc. 138, 2279 (1991).CrossRefGoogle Scholar
4da Fonseca, C. and da Cunha Belo, M., C. R. Acad. Sci. II, Mec. Phys. Chim. Astron. 318, 753 (1994).Google Scholar
5Gusmano, G., Montesperelli, G., Nunziante, P., Traversa, E., Montenero, A., Braghini, M., Mattogno, G., and Bearzotti, A., J. Ceram. Soc. Jpn. 101, 1095 (1993).CrossRefGoogle Scholar
6Huusko, J., Lantto, V., and Torvela, H., Sens. Actuators B, Chem. 16, 245 (1993).CrossRefGoogle Scholar
7Grätzel, M., MRS Bull. 18 (11), 61 (1993).CrossRefGoogle Scholar
8Hufner, S. and Wertheim, G. K., Phys. Rev. B 8, 4857 (1973).CrossRefGoogle Scholar
9Knotek, M. L. and Feibelman, P. J., Phys. Rev. Lett. 40, 964 (1978).CrossRefGoogle Scholar
10Mohamed, M.H., Sadeghi, H.R., and Henrich, V.E., Phys. Rev. B 37, 8417 (1988).CrossRefGoogle Scholar
11Cardona, M. and Harbeke, G., Phys. Rev. 137, A1467 (1965).CrossRefGoogle Scholar
12Pascual, J., Camassel, J., and Mathieu, H., Phys. Rev. Lett. 39, 1490 (1977).CrossRefGoogle Scholar
13Yoldas, B.E., Appl. Opt. 21, 2960 (1982).CrossRefGoogle Scholar
14Pauling, L., J. Am. Chem. Soc. 51, 1010 (1929).CrossRefGoogle Scholar
15Aono, M. and Hasiguti, R.R., Phys. Rev. B 48, 12406 (1993).CrossRefGoogle Scholar
16Clarck, R. J. H., The Chemistry of Titanium and Vanadium (Elsevier Publisher Co., New York, 1968), Chap. 9.Google Scholar
17Selvaraj, U., Prasadarao, A. V., Komameni, S., and Roy, R., J. Am. Ceram. Soc. 75, 1167 (1992).CrossRefGoogle Scholar
18Yoldas, B.E., J. Sol-Gel Science and Technology 1, 65 (1993).CrossRefGoogle Scholar
19Tanabe, K., Misono, M., Ono, Y., and Hattori, H., Studies in Surface Science and Catalysis (Elsevier Publishing Co., New York, 1989), Vol. 51.Google Scholar
20Yoldas, B.E., J. Mater. Sci. 21, 1087 (1986).CrossRefGoogle Scholar
21Lopez, T., Sánchez, E., Bosch, P., Meas, Y., and Gómez, R., Mater. Cbem. Phys. 32, 141 (1992).CrossRefGoogle Scholar
22Chih-Wen, H., Chiang, A.S.T., Cheng-Chung, L., and Sheng-Jenn, Y., J. Non-Cryst. Solids 144, 53 (1992).Google Scholar
23International Tables for X-ray Crystallography (Kynoch Press, Birmingham, U.K., 1974), Vol. IV.Google Scholar
24Young, R. A. and Dreele, R. Von, “Rietveld Method Short Course,” Continuing Education, Georgia Institute of Technology, April 1993.Google Scholar
25Margarita Schneider EDV-Vertrieb, Starnbergweg 18, D-8134 Pöcking, Germany, 1992. Tel. 0049-8157-8727, Fax. 0049-8157-4527.Google Scholar
26Thompson, P., Cox, D. E., and Hastings, J. B., J. Appl. Crystallogr. 20, 79 (1987).CrossRefGoogle Scholar
27Young, R. A. and Desai, P., Arch. Nauki Mater. 10, 71 (1989).Google Scholar
28Prince, E., J. Appl. Crystallogr. 14, 157 (1981).CrossRefGoogle Scholar
29Sánchez, E., López, T., Gómez, R.,Bokhimi, , Morales, A., and Novaro, O., unpublished.Google Scholar
30Ding, X. Z., Qi, Z. A., and He, Y. Z., Nanostructured Materials 4, 663 (1994).CrossRefGoogle Scholar
31Yanagisawa, K., Sasaki, M., Nishioka, M., Ioku, K., and Yamasaki, N., J. Mater. Sci. Lett. 13, 765 (1994).CrossRefGoogle Scholar
32Aono, M. and Hasiguti, R.R., Phys. Rev. B 48, 12406 (1993).CrossRefGoogle Scholar
33Hasiguti, R.R., Ann. Rev. Mater. Sci. 2, 69 (1972).CrossRefGoogle Scholar
34Bokhimi, Morales, A., López, T., and Gómez, R., J. Solid State Chem. 115, 411 (1995).Google Scholar
35Klauer, S. and Wohlecke, M., Phys. Rev. B 49, 158 (1994).CrossRefGoogle Scholar
36Bates, J.B. and Perkins, R.A., Phys. Rev. B 16, 3713 (1977).CrossRefGoogle Scholar
37O'Reagan, B. and Grätzel, M., Nature (London) 353, 737 (1991).CrossRefGoogle Scholar
38Du, Y. and Nowick, A. S., in Solid State Ionics IV, edited by Nazri, G-A., Tarascon, J-M., and Schreiber, M. (Mater. Res. Soc. Symp. Proc. 369, Pittsburgh, PA, 1995).Google Scholar
39Kumar, K.N.P., Keizer, K., and Burggraaf, A.J., J. Mater. Sci. Lett. 13, 59 (1994).Google Scholar
40Terabe, K., Kato, K., Miyazaki, H., Yamaguchi, S., Imai, A., and Iguchi, Y., J. Mater. Sci. 29, 1617 (1994).CrossRefGoogle Scholar
41Ding, X., Liu, L., Ma, X., Qi, Z., and He, Y., J. Mater. Sci. Lett. 13, 462 (1994).CrossRefGoogle Scholar