Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:33:24.577Z Has data issue: false hasContentIssue false

Effect of grain alignment and processing temperature on critical currents in YBa2Cu3O7-δ sintered compacts

Published online by Cambridge University Press:  31 January 2011

J. E. Tkaczyk
Affiliation:
General Electric Corporate Research and Development, Schenectady, New York 12301
K. W. Lay
Affiliation:
General Electric Corporate Research and Development, Schenectady, New York 12301
Get access

Abstract

Magnetically aligned YBa2Cu3O7-δ ceramics show resistivities approaching that of single crystals and improved transport critical currents in a magnetic field. Reduced microcracking and increased transport along the ab-plane are believed responsible for the improved performance over nonaligned ceramics. Aligned and nonaligned samples were prepared in parallel using a range of sintering and annealing temperatures. A rapid rise in density for samples sintered above 900°C in oxygen is accompanied by rapid grain growth, improved alignment, a drop in the room temperature resistivity, and an increase in the critical current. The presence of low melting point (i.e., Ba–Cu–O-rich) phases at grain boundaries is believed responsible for the rapid densification. However, the presence of this phase does not appear to be the most important factor limiting Jc. A high temperature oxygen anneal at 900°C improved performance as compared to anneals at 500°C, possibly due to the removal of carbon. For aligned samples sintered at 980°C, critical currents are over 200 A/cm2 at 77 K, ¼ tesla, and room temperature resistivities are below 350 μΩ-cm.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bednorz, J. G. and Müller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Ekin, J.W., Braginski, A.I., Panson, A. J., Janocko, M.A., Capone, D.W., II, Zaluzec, N. J., Flandermeyer, B., de Lima, O. F., Hong, M., Kwo, J., and Liou, S. H., J. Appl. Phys. 62, 4821 (1987); D. P. Hampshire, X. Cai, J. Seuntjens, and D. C. Larbalestier, Super-cond. Sci. Technol. 1, 12 (1988).CrossRefGoogle Scholar
3Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., and Gambino, R. J., Phys. Rev. Lett. 58, 2684 (1987); B. Oh, M. Naito, S. Arnason, P. Rosenthal, R. Barton, M. R. Beasley, T. H. Geballe, R. H. Hammond, and A. Kapitulnik, Appl. Phys. Lett. 51, 852 (1987); Y. Enomoto, T. Murakami, M. Suzuki, and K. Moriwaki, Jpn. J. Appl. Phys. 26, L1248 (1987).CrossRefGoogle Scholar
4Watanabe, K., Yamane, H., Kurosawa, H., Hirai, T., Kobayashi, N., Iwasaki, H., Noto, K., and Muto, Y., Appl. Phys. Lett. 54, 575 (1989); J. D. Hettinger, A.G. Swanson, W. J. Skocpol, J. S. Brooks, J. M. Graybeal, P. M. Mankiewich, R. E. Howard, B. L. Straughn, and E.G. Burkhardt, Phys. Rev. Lett. 62, 2044 (1989); J. S. Satchell, R. G. Humphreys, N. G. Chew, J.A. Edwards, and M. J. Kane, Nature 334, 331 (1988).CrossRefGoogle Scholar
5Alford, N. McN., Birchall, J. D., Clegg, W. J., and Kendell, K., J. Appl. Phys. 65, 2856 (1989); M. Okada, A. Okayama, T. Morimoto, T. Matsumoto, K. Aihara, and S. Matsuda, Jpn. J. Appl. Phys. 27, L185 (1988); D. P. Hampshire, X. Cai, J. Seuntjens, and D. C. Larbalestier, Supercond. Sci. Technol. 1, 12 (1988).CrossRefGoogle Scholar
6Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M. M., and Scheuermann, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
7Aponte, J., Abache, H. C., Sa-Neto, A., and Octavio, M., Phys. Rev. B 39, 2233 (1989).CrossRefGoogle Scholar
8Peterson, R. L. and Ekin, J.W., Phys. Rev. B 37, 9848 (1988).CrossRefGoogle Scholar
9Küpfer, H., Apfelstedt, I., Flükiger, R., Keller, C., Meier-Hirmer, R., Runtsch, B., Turowski, A., Wiech, U., and Wolf, T., Cryo-genics 28, 650 (1988).CrossRefGoogle Scholar
10Ghosh, A. K., Suenaga, M., Asano, T., Moodenbaugh, A. R., and Sabatini, R. L., Adv. Cryogenic Mater. 34, 607 (1987); Gang Xiao, F. H. Streitz, A. Gavrin, M. Z. Cieplak, J. Childress, Ming Lu, A. Zwicker, and C. L. Chien, Phys. Rev. B 36, 2382 (1987).Google Scholar
11Dinger, T. R., Worthington, T. K., Gallagher, W. J., and Sand-strom, R. L., Phys. Rev. Lett. 58, 2687 (1987).CrossRefGoogle Scholar
12Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
13Farrell, D. E., Chandrasekhar, B.S., DeGuire, M.R., Fang, M. M., Kogan, V. G., Clem, J. R., and Finnemore, D. K., Phys. Rev. B 36, 4025 (1987).CrossRefGoogle Scholar
14Livingston, J.D., Hart, H.R., Jr., and Wolf, W.P., J. Appl. Phys. 64, 5806 (1988).CrossRefGoogle Scholar
15Arendt, R. H., Gaddipati, A. R., Garbauskas, M. F., Hall, E. L., Hart, H.R., Jr., Lay, K.W., Livingston, J.D., Luborsky, F.E., and Schilling, L.L. (Proc. Mater. Res. Soc. Symp.) (Materials Re-search Society, Pittsburgh, PA, 1988), Vol. 99, p. 203.CrossRefGoogle Scholar
16Nakagawa, Y., Yamasaki, H., Obara, H., and Kimura, Y., Jpn. J. Appl. Phys. 28, L547 (1989); D. P. Hampshire, J. Seuntjens, L. D. Cooley, and D. C. Larbalestier, Appl. Phys. Lett. 53, 814 (1988); K. Chen, B. Maheswaran, Y.P. Liu, B.C. Giessen, C. Chan, and R. S. Markiewicz, Appl. Phys. Lett. 55, 289 (1989).CrossRefGoogle Scholar
17Morii, Y., Funahashi, S., Ozawa, K., Okada, M., Matsumoto, Y., Aihara, K., and Matsuda, S., Jpn. J. Appl. Phys. 28, L618 (1989).CrossRefGoogle Scholar
18Knorr, D. B. and Livingston, J. D., Supercond. Sci. Technol. 1, 302 (1989).CrossRefGoogle Scholar
19Okada, M., Okayama, A., Morimoto, T., Matsumoto, T., Aihara, K., and Matsuda, S., Jpn. J. Appl. Phys. 27, L185 (1988).CrossRefGoogle Scholar
20Okada, M., Okayama, A., Matsumoto, T., Aihara, K., Matsuda, S., Ozawa, K., Morri, Y., and Funahashi, S., Jpn. J. Appl. Phys. 27, L1715 (1988).CrossRefGoogle Scholar
21Yamada, Y., Morimoto, T., and Suzuki, M., Jpn. J. Appl. Phys. 28, L557 (1989); H. Dersch and G. Blatter, Phys. Rev. B 38, 11391 (1988); H. Dersch and G. Blatter, Phys. Rev. B 38, 11391 (1988).CrossRefGoogle Scholar
22Schneemeyer, L. F., Gyorgy, E. M., and Waszczak, J.V., Phys. Rev. B 36, 8804 (1987); G.W. Crabtree, J. Z. Liu, A. Umezawa, W. K. Kwok, C. H. Sowers, S. K. Malik, B.W. Veal, D. J. Lam, M. B. Brodsky, and J.W. Downey, Phys. Rev. B 36, 4021 (1987); D. E. Farrell, B. S. Chandrasekhar, M. R. DeGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 36, 4032 (1987).CrossRefGoogle Scholar
23Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G.W., Fastnocht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
24Nakahara, S., Fisanick, G. J., Yan, M. F., van Dover, R. B., and Boone, T., Cryst, J.. Growth 85, 639 (1987).CrossRefGoogle Scholar
25Kroeger, D.M., Metals, J. of, 14 (Jan. 1989); Babcock, S. E., Kelley, T. F., Lee, P. J., Seuntjens, J. M., Lavanier, L.A., and Larbalestier, D. C., Physica C 152, 25 (1988); D. M. Kroeger, A. Choudhury, J. Brynestad, R. K. Williams, R. A. Padgett, and W. A. Coghlan, J. Appl. Phys. 64, 331 (1988); J.E. Blendell, C.A. Handwerker, M.D. Vaudin, and E. R. Fuller, Jr., J. Cryst. Growth 89, 93 (1988); J. D. Verhoeven, A. J. Bevolo, R.W. McCallum, E.D. Gibson, and M.A. Noack, Appl. Phys. Lett. 52, 745 (1988).Google Scholar
26Kikuchi, A., Maesuda, M., Maeda, T., Ishh, M., Takata, M., and Yamashita, T., Jpn. J. Appl. Phys. 27, 1231 (1988); D. Shi, D.W. Capone, II, G.T. Goudey, J. P. Singh, N. J. Zaluzec, and K. C. Goretta, Mater. Lett. 6, 217 (1988); K. Sawano, A. Hayashi, T. Ando, T. Inuzuka, and H. Kubo, preprint.CrossRefGoogle Scholar
27Ullman, J. E., McCallum, R.W., and Verhoeven, J. D., J. Mater. Res. 4 (4), 752 (1989); K.W. Lay and G. M. Renlund, submitted to J. Am. Ceram. Soc. (1989).CrossRefGoogle Scholar
28Stucki, F., Brüesch, P., and Baumann, T., Physica C 156, 461 (1988).CrossRefGoogle Scholar
29van der Maas, J., Gasparov, V. A., and Pavuna, D., Nature 328, 603 (1987).CrossRefGoogle Scholar
30Wakata, M., Miyashita, S., Egawa, K., Higuma, H., Ogama, T., Yoshizaki, K., Yokayama, S., Shimohata, K., Morita, M., and Yamada, T., presented at the ISTEC Workshop on Superconduc-tivity, Oiso (February 1989).Google Scholar
31Fullman, R. L., Trans. AIME 197, 1267 (1953).Google Scholar
32Glowacki, B. A. and Evetts, J.E. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 99, p. 419.Google Scholar
33Halbritter, J., Inter. J. Modern Phys. B 3, 719 (1989).CrossRefGoogle Scholar
34Hikita, M. and Suzuki, M., Phys. Rev. B 39, 4756 (1989); T.A. Friedmann, J. P. Rice, J. Giapintzakis, and D. M. Ginsberg, preprint (1989).CrossRefGoogle Scholar
35Penney, T., von Molnár, S., Kaiser, D., Holtzberg, F., and Kleinsasser, A.W., Phys. Rev. B 38, 2918 (1988).CrossRefGoogle Scholar
36Ginley, D. S., Venturini, E.L., Kwak, J. F., Baughman, R. J., and Morosin, B., Mater, J.. Res. 4 (3), 496 (1989).Google Scholar
37McCallum, R. W., J. of Metals, 50 (January 1989).CrossRefGoogle Scholar
38Gallagher, P. K., Thermochimica Acta 148, 299 (1989).CrossRefGoogle Scholar