Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T12:32:55.919Z Has data issue: false hasContentIssue false

Effect of film composition on the orientation of (Ba,Sr)TiO3 grains in (Ba,Sr)yTiO2+ythin films

Published online by Cambridge University Press:  31 January 2011

Debra L. Kaiser
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Mark D. Vaudin
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Lawrence D. Rotter
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
John E. Bonevich
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Igor Levin
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
John T. Armstrong
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Alexander L. Roytburd
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
Darrell G. Schlom
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802–5005
Get access

Extract

Thin films of composition (Ba,Sr)yTiO2+y with 0.43 ≤ y ≤; 1.64, were deposited by metalorganic chemical vapor deposition on (100) MgO substrates at various growth conditions. X-ray diffraction and transmission electron microscopy studies showed that the films were composed of epitaxial Ba1–xSrxTiO3 (x ≈0.06) grains and an amorphous phase. The orientation of the tetragonal Ba1–xSrxTiO3 grains (pure a axis, pure c axis, or a mix of the two) was found to be strongly dependent upon film composition. This composition dependence is explained for the majority of the Ti-rich films by an analysis of average strains in the two-phase films, assuming a compressive strain of ≈1% in the amorphous phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J.F., Ferroelectrics 183, 51 (1996).CrossRefGoogle Scholar
2.Scott, J.F., Ferroelectr. Rev. 1, 1 (1998).CrossRefGoogle Scholar
3.Glass, A.M., Science 235, 1003 (1987).CrossRefGoogle Scholar
4.Holman, R.L., Althouse Johnson, L.M., and Skinner, D.P., Opt. Eng. 26, 134 (1987).CrossRefGoogle Scholar
5.Johnson, C.J., Appl. Phys. Lett. 7, 221 (1965).CrossRefGoogle Scholar
6.Jona, F. and Shirane, G., Ferroelectric Crystals (Dover Publications, New York, 1993), p. 112.Google Scholar
7.Iijima, K., Terashima, T., Yamamoto, K., Hirata, K., and Bando, Y., Appl. Phys. Lett. 56, 527 (1990).CrossRefGoogle Scholar
8.Nakazawa, H., Yamane, H., and Hirai, T., Jpn. J. Appl. Phys. 30, 2200 (1991).CrossRefGoogle Scholar
9.Wills, L.A., Wessels, B.W., Richeson, D.S., and Marks, T.J., Appl. Phys. Lett. 60, 41 (1992).CrossRefGoogle Scholar
10.Chern, C.S., Zhao, J., Luo, L., Lu, P., Li, Y.Q., Norris, P., Kear, B., Cosandey, F., Maggiore, C.J., Gallois, B., and Wilkens, B.J., Appl. Phys. Lett. 60, 1144 (1992).CrossRefGoogle Scholar
11.Van Buskirk, P.C., Stauf, G.T., Gardiner, R., Kirlin, P.S., Bihari, B., and Kumar, J., in Ferroelectric Thin Films III, edited by Tuttle, B.A., Myers, E.R., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), pp. 119124.Google Scholar
12.Kaiser, D.L., Vaudin, M.D., Rotter, L.D., Wang, Z.L., Cline, J.P., Hwang, C.S., Marinenko, R.B., and Gillen, J.G., Appl. Phys. Lett. 66, 2801 (1995).CrossRefGoogle Scholar
13.Srikant, V., Tarsa, E.J., Clarke, D.R., and Speck, J.S., J. Appl. Phys. 77, 1517 (1995).CrossRefGoogle Scholar
14.Fujimoto, O., Kobayashi, Y., and Kubota, K., Thin Solid Films 169, 249 (1989).CrossRefGoogle Scholar
15.Norton, M.G., Scarfone, C., Li, J., Carter, C.B., and Mayer, J.W., J. Mater. Res. 6, 2022 (1991).CrossRefGoogle Scholar
16.McKee, R.A., Walker, F.J., Conner, J.R., Specht, E.D., and Zelmon, D.E., Appl. Phys. Lett. 59, 782 (1991).CrossRefGoogle Scholar
17.Nashimoto, K., Fork, D.K., and Geballe, T., Appl. Phys. Lett. 60, 1199 (1992).CrossRefGoogle Scholar
18.McKee, R.A., Walker, F.J., Specht, E.D., Jellison, G.E., Boatner, L.A., and Harding, J.H., Phys. Rev. Lett. 72, 2741 (1994).CrossRefGoogle Scholar
19.Watanabe, K., Tanaka, M., Sumitomo, E., Katori, K., Yagi, H., and Scott, J.F., Appl. Phys. Lett. 73, 126 (1998).CrossRefGoogle Scholar
20.Kaiser, D.L., Vaudin, M.D., Gillen, G., Hwang, C-S., Robins, L.H., and Rotter, L.D., J. Cryst. Growth 137, 136 (1994).CrossRefGoogle Scholar
21.Wagner, F., Strem Chemicals, Inc., Newburyport, MA (private communication).Google Scholar
22.Waldo, R.A., in Microbeam Analysis-1988, edited by Newbury, D.E. (San Francisco Press, San Francisco, CA, 1988), pp. 310– 314.Google Scholar
23.Robins, L.H., Farabaugh, E.N., and Feldman, A., Diamond Films Technol. 5, 199 (1995).Google Scholar
24.McQuarrie, M., J. Am. Ceram. Soc. 38, 444 (1955).CrossRefGoogle Scholar
25.Roth, R.S., Rawn, C.J., Lindsay, C.G., and Wong-Ng, W., J. Solid State Chem. 104, 99 (1993).CrossRefGoogle Scholar
26.Hwang, C.S., Vaudin, M.D., and Stauf, G.T., J. Mater. Res. 10, 2885 (1995).CrossRefGoogle Scholar
27. JCPDS Powder Diffraction File, International Center for Diffraction Data, card file numbers 5–626 (tetragonal BaTiO3), 21–1272 (TiO2, anatase), 4–829 (cubic MgO), 35–734 (cubic SrTiO3), 22–1054 [Ba(OH)2] (Newtown Square, PA, 1996).Google Scholar
28.Theis, C.D., Yeh, J., Schlom, D.G., Hawley, M.E., and Brown, G.W., Thin Solid Films, 325, 107 (1998).CrossRefGoogle Scholar
29.Theis, C.D., Yeh, J., Schlom, D.G., Hawley, M.E., Brown, G.W., Jiang, J.C., and Pan, X.Q., Appl. Phys. Lett. 72, 2817 (1998).CrossRefGoogle Scholar
30.Levin, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists (The American Ceramic Society, Columbus, OH, 1974), p. 195.Google Scholar
31.Polli, A.D., Lange, F.F., and Levi, C.G., J. Am. Ceram. Soc. (in press).Google Scholar
32.Shirasaki, S., Solid State Commun. 9, 1217 (1971).CrossRefGoogle Scholar
33.Roytburd, A.L., J. Appl. Phys. 83, 228 (1998).CrossRefGoogle Scholar
34.Smolenskii, G.A. and Rozgachev, K.I., Zh. Tekh. Fiz. 24, 1751 (1954).Google Scholar
35.Alpay, S.P. and Roytburd, A.L., J. Appl. Phys. 83, 4714 (1998).CrossRefGoogle Scholar
36.Speck, J.S. and Pompe, W., J. Appl. Phys. 76, 466 (1994).CrossRefGoogle Scholar
37.Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Lee, T.Y.R, Thermal Expansion: Nonmetallic Solids (IFI/Plenum Data Co., New York, 1977), pp. 288, 554, 570.CrossRefGoogle Scholar
38.Bansal, N.P. and Doremus, R.H., Handbook of Glass Properties (Academic Press, Inc., New York, 1986), p. 175.Google Scholar
39.Scott, J.F. and Paz de Araujo, C.A., Science 246, 1400 (1989).CrossRefGoogle Scholar
40.Kay, H.E. and Vousden, P., Philos. Mag. 40, 1019 (1949).CrossRefGoogle Scholar