Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T23:06:43.822Z Has data issue: false hasContentIssue false

Effect of CuO addition on the high-field and high-pressure behavior of microwave-prepared lead vanadate glasses

Published online by Cambridge University Press:  31 January 2011

B. Vaidhyanathan
Affiliation:
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560 012, India
S. Asokan
Affiliation:
Department of Instrumentation, Indian Institute of Science, Bangalore-560 012, India
K. J. Rao
Affiliation:
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560 012, India
Get access

Abstract

High-field and high-pressure behavior of microwave-prepared xCuO:(45−x) PbO: 55V2O5 (x = 0 to 20) glasses were investigated for the first time. It was found that the addition of CuO significantly alters the nonlinear IV characteristics of these glasses; while the glasses with x = 10 exhibit a current-controlled negative resistance behavior associated with a memory type transition, glasses with x = 15 show a threshold-type behavior. Remarkable differences were also noticed in the high-pressure electrical resistivity behavior between the low- and high-CuO-containing glasses. Corroborative thermal, electrical, microscopic, and spectroscopic measurements were carried out to understand the structure–property relations. A structural model was proposed, which is based on the chemical nature of the constituents present in the glasses. The model accounts well for the various observed properties of these glasses.

Type
Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sayer, M. and Mansingh, A., Phys. Rev. B 6, 4629 (1972).CrossRefGoogle Scholar
2.Ghosh, A., Phys. Rev. B 42, 5665 (1990).CrossRefGoogle Scholar
3.Vaidhyanathan, B., Kumar, P., Rao, J.L., and Rao, K.J., J. Phys. Chem. Solids (1997, in press).Google Scholar
4.Landsberger, F.R. and Bray, P.J., J. Chem. Phys. 53, 2757 (1970).CrossRefGoogle Scholar
5.Muthupari, S., Raghavan, S.L., and Rao, K.J., J. Mater. Res. 10, 2945 (1995).CrossRefGoogle Scholar
6.Ghosh, A., J. Appl. Phys. 64, 2652 (1988).CrossRefGoogle Scholar
7.Livage, J., Jolivet, J.P., and Tronc, E., J. Non-Cryst. Solids 121, 35 (1990).CrossRefGoogle Scholar
8.Pyros, R.W., Schwartz, B.B., and Ovshinsky, S.R., Disorder and Order in Solid State: Concepts and Devices (Plenum, New York, 1989).Google Scholar
9.Mackenzie, J.D., Modern Aspects of Vitreous State (Butterworth, Washington, DC, 1964), Vol. 3, p. 126.Google Scholar
10.Linsley, G.S., Owen, A.E., and Hayatee, F.M., J. Non-Cryst. Solids 4, 208 (1970).CrossRefGoogle Scholar
11.Austin, I.G. and Mott, N.F., Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
12.Greaves, G.N., J. Non-Cryst. Solids 11, 427 (1973).CrossRefGoogle Scholar
13.Bandyopadhyay, A.K., J. Mater. Sci. 16, 189 (1981).CrossRefGoogle Scholar
14.Bogomolova, L.D., J. Non-Cryst. Solids 30, 379 (1979).CrossRefGoogle Scholar
15.Adler, D., Amorphous Semiconductors (CRC, Butterworth, London, United Kingdom, 1971).Google Scholar
16.Vaidhyanathan, B., Rao, K.J., Prakash, S., Murugavel, S., and Asokan, S., J. Appl. Phys. 78, 1358 (1995).CrossRefGoogle Scholar
17.Vaidhyanathan, B., Asokan, S., and Rao, K.J., Bull. Mater. Sci. 18, 301 (1995).CrossRefGoogle Scholar
18.Chatterjee, R., M.S. Thesis, Indian Institute of Science (1993).Google Scholar
19.Higgens, K., Temple, B.K., and Lewis, J.E., J. Non-Cryst. Solids 4, 208 (1977).Google Scholar
20.Gattef, E. and Dimitriev, Y., Philos. Mag. B 40, 233 (1979).CrossRefGoogle Scholar
21.Bhatia, K.L., Gosain, D.P., Parthasarathy, G., and Gopal, E.S.R, Phys. Rev. B 34, 8786 (1986).CrossRefGoogle Scholar
22.Vaidhyanathan, B., Asokan, S., and Rao, K.J., Pramana 43, 189 (1994).CrossRefGoogle Scholar
23.Rao, K.J., Rev. Solid State Sci. 1, 55 (1987).Google Scholar
24.Pappin, A.J., Ingram, M.D., Hutchinson, J.M., Chryssikos, G.D., and Kamitsos, E.I., Phys. Chem. Glasses 36, 164 (1995).Google Scholar
25.Vaidhyanathan, B., Ganguli, M., and Rao, K.J., J. Solid State Chem. 143, 448 (1994).CrossRefGoogle Scholar
26.Chatterjee, R., Acharya, K.V., Asokan, S., and Titus, S.S.K, Rev. Sci. Instrum. 65, 2382 (1994).CrossRefGoogle Scholar
27.Hayakawa, S., Yoko, T., and Sakka, S., J. Non-Cryst. Solids 183, 73 (1995).CrossRefGoogle Scholar
28.Mandal, S. and Ghosh, A., Phys. Rev. B 48, 9388 (1993).CrossRefGoogle Scholar
29.Ahmed, M.M. and Hogarth, C.A., Phys. Status Solidi (a) K 49 (1987).Google Scholar
30.Omar, M.H. and Morcos, M.N., in Recent Advances in Science and Technology of Materials, edited by Bishay, Adli (Plenum Press, New York, 1974), Vol. 1, p. 91.CrossRefGoogle Scholar
31.Tauc, J., Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974).CrossRefGoogle Scholar
32.Jackson, J.L. and Shaw, M.P., Appl. Phys. Lett. 25, 666 (1974).CrossRefGoogle Scholar
33.Chunghi, R.C. and Yoon, S.W., J. Korean Phys. Soc. 7, 87 (1971).Google Scholar
34.Murugavel, S. and Asokan, S., Phys. Rev. B 58, 3022 (1998).CrossRefGoogle Scholar
35.Botto, I.L., Baran, E.J., Pedregosa, J.C., and Aymonino, P.J., Mh. Chem. 110, 895 (1979).Google Scholar
36.Dimitrov, V. and Dimitriev, Y., J. Non-Cryst. Solids 122, 133 (1990).CrossRefGoogle Scholar
37.Selvaraj, U. and Rao, K.J., J. Non-Cryst. Solids 104, 300 (1988).CrossRefGoogle Scholar
38.Rao, K.J. and Raghavan, S.L., J. Solid State Chem. 111, 190 (1994).CrossRefGoogle Scholar
39.Otamiri, J., Andersson, A., and Jansen, S.J., Langmuir 6, 365 (1990).CrossRefGoogle Scholar
40.Zallen, R., The Physics of Amorphous Solids (John Wiley & Sons, New York, 1983).CrossRefGoogle Scholar