Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T08:37:51.140Z Has data issue: false hasContentIssue false

Effect of combined metal-carbon additions on the microstructure and structure of Sm2Fe17

Published online by Cambridge University Press:  31 January 2011

B.E. Meacham
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
J.E. Shield
Affiliation:
Department of Mechanical Engineering, University of Nebraska, Lincoln, Nebraska 68588
Get access

Abstract

The effect of combined alloying additions on the structure and scale of rapidly solidified Sm–Fe alloys was investigated. Transition metal additions tend to promote the formation of the disordered TbCu7-type structure in Sm2Fe17 alloys, as determined by monitoring the long-range order parameter. Essentially no order was observed for M = Ti, Zr, V, or Nb. Thus, the structure was close to the prototypical TbCu7-type structure. With M = Si, a large amount of order was observed (S = 0.62), resulting in a structure closer to the well-ordered Th2Zn17-type. The microstructural scale was also affected by alloying. In this case, refinement depended on the substituent and also on carbon for microstructural refinement. The scale of the as-solidified grain structures ranged from 100 nm for SiC-modified alloys to 13 nm for NbC-modified alloys. The degree of refinement was directly related to the atomic size of the M addition. The refinement was the result of solute partitioning to grain boundaries, resulting in a solute drag effect that lowered the growth rates.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xingbo, Y., Miyazaki, T., Izumi, T., Saito, H., and Takahashi, M., IEEE Trans. Magn. 23, 3104 (1987).CrossRefGoogle Scholar
Katter, M., Wecker, J., and Schultz, L., J. Appl. Phys. 70, 3188 (1991).CrossRefGoogle Scholar
Pinkerton, F.E. and Fuerst, C.D., Appl. Phys. Lett. 60, 2558 (1992).CrossRefGoogle Scholar
Yoneyama, T., Yamamoto, T., and Hidaka, T., Appl. Phys. Lett. 67, 3197 (1995).CrossRefGoogle Scholar
Shield, J.E., Li, C.P., and Branagan, D.J., J. Magn. Magn. Mater. 188, 353 (1998).CrossRefGoogle Scholar
Sun, H., Makita, K., Tomida, T., Hirosawa, S., and Maehara, Y., Phys. Status Solidi A 158, 559 (1996).CrossRefGoogle Scholar
Zhang, J.X., Kleinschroth, I., Cheng, Z.H., Goll, D., Kronmuller, H., J. Appl. Phys. 86, 3274 (1999).CrossRefGoogle Scholar
Cheng, Z.H., Zhang, J.X., Guo, H.Q., Lier, J. van, Kronmuller, H., and Shen, B.G., Appl. Phys. Lett. 72, 1110 (1998).CrossRefGoogle Scholar
Zhang, H.W., Zhang, S.Y., Shen, B.G., and Wang, F.W., J. Magn. Magn. Mater. 187, 247 (1998).Google Scholar
Meacham, B.E., Branagan, D.J., and Shield, J.E., J. Appl. Phys. 87, 6707 (2000).CrossRefGoogle Scholar
Meacham, B.E., Shield, J.E., and Branagan, D.J., IEEE Trans. Magn. 37, 2503 (2001).Google Scholar
Shield, J.E., Kappes, B.B., Meacham, B.E., Dennis, K.W., and Kramer, M.J., J. Alloys Compd. (in press).Google Scholar
Luo, H., Hu, Z., Chen, M., Yelon, W.B., Marasinghe, G.K., Ezekwenna, P.C., James, W.J., Chang, W.C., and Tsai, S.H., J. Appl. Phys. 81, 4542 (1997).CrossRefGoogle Scholar
Shield, J.E., Branagan, D.J., Li, C.P., and McCallum, R.W., J. Appl. Phys. 83, 5564 (1998).CrossRefGoogle Scholar
Shield, J.E., Li, C.P., and Branagan, D.J., J. Magn. Magn. Mater. 188, 353 (1998).CrossRefGoogle Scholar
Shield, J.E., J. Alloys Compd. 291, 222 (1999).CrossRefGoogle Scholar
Cheng, Z.H., Zhang, J.X., Guo, H.Q., Lier, J. van, Kronmuller, H., and Shen, B.G., Appl. Phys. Lett. 72, 1110 (1998).CrossRefGoogle Scholar
Yelon, W.B., Hu, Z., James, W.J., and Marasinghe, G.K., J. Appl. Phys. 79, 5939 (1996).CrossRefGoogle Scholar
Branagan, D.J., Kramer, M.J., and McCallum, R.W., J. Alloys Compd. 244, 27 (1996).CrossRefGoogle Scholar
Atlas of Crystal Structure Types for Intermetallic Phases, edited by Daams, J.L.C., Villars, P., and Vucht, J.H.N. van (ASM International, Metals Park, OH, 1991).Google Scholar
International Tables for Crystallography, edited by Shmueli, U. (Kluwer Academic, New York, 1993), Vol. B.Google Scholar
Yelon, W.B., IEEE Trans. Magn. 31, 3689 (1995).CrossRefGoogle Scholar
Marasinghe, G.K., Ezekwenna, P.C., James, W.J., Long, J.G., Pringle, O.A., Hu, Z., Yelon, W.B., Grandjean, F., J. Appl. Phys. 79, 4587 (1996).CrossRefGoogle Scholar
Long, G.J., Marasinghe, G.K., Mishra, S., Pringle, O.A., Grandjean, F., Buschow, , Middleton, D.P., Yelon, W.B., Pourian, F., and Isnard, , Solid State Comm. 88, 761 (1993).CrossRefGoogle Scholar
Chen, Z., Hadjipanayis, G.C., Daniel, M., Digas, M., Moukarika, A., and Papaefthymiou, V., J. Magn. Magn. Mater. 177–181, 1109 (1998).CrossRefGoogle Scholar
Hu, Z. and Yelon, W.B., J. Appl. Phys. 80, 6175 (1996).CrossRefGoogle Scholar