Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T02:34:06.557Z Has data issue: false hasContentIssue false

Effect of annealing time on structural and microwave dielectric characteristics of Li2ZnTi3O8 ceramics

Published online by Cambridge University Press:  11 May 2015

Hamid Taghipour-Armaki
Affiliation:
Department of Materials Science and Engineering, Tarbiat Modares University, Tehran 14115–143, Iran
Ehsan Taheri-Nassaj*
Affiliation:
Department of Materials Science and Engineering, Tarbiat Modares University, Tehran 14115–143, Iran
Maryam Bari
Affiliation:
Department of Materials Science and Engineering, Tarbiat Modares University, Tehran 14115–143, Iran
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the present work, the Li2ZnTi3O8 ceramics were prepared via the solid-state reaction method, afterward annealed at 800 °C in a time variation from 4 to 20 h. The ordering, microstructures and dielectric properties were investigated using x-ray diffraction, scanning electron microscopy, network analyzer, and Raman spectroscopy. The most significant enhancement of quality factor is obtained in the sample annealed for 20 h, while the dielectric constant and temperature coefficient of resonant frequency change slightly. This result mainly attributes to the enhancement of ordering, which could be related to the increase in the Zn–O bond strength in ZnO4 tetrahedra. Meanwhile, the full-width at half-maximum of A1g mode decreased with higher annealing time, which suggested less variation in the Zn–O bond length and a higher degree of ordering. The best combination of microwave dielectric characteristic is obtained in the sample annealed at 800 °C for 20 h: Q × f = 112,400 GHz, εr = 24.500, and τf = −11 ppm/°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sebastian, M.T.: Dielectric Materials for Wireless Communications (Elseiver, Oxford, U. K, 2008); pp. 2, 3.Google Scholar
Chen, Y-C., Chang, K-C., and Tsai, D-Y.: A hybrid dielectric resonator antenna based upon novel complex perovskite microwave ceramic. Ceram. Int. 39, 80438048 (2013).Google Scholar
Tamura, H., Konoike, T., Sakabe, Y., and Wakino, K.: Improved high-Q dielectric resonator with complex perovskite structure. J. Am. Ceram. Soc. 67, c59c61 (1984).Google Scholar
Chen, G., Hou, M., Bao, Y., Yuan, C., Zhou, C., and Xu, H.: Silver co‐firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dopant. Int. J. Appl. Ceram. Technol. 10, 110 (2013).Google Scholar
Tang, B., Li, H., Fan, P., Yu, S., and Zhang, S.: The effect of Mg: Ti ratio on the phase composition and microwave dielectric properties of MgTiO3 ceramics prepared by one synthetic process. J. Mater. Sci. 25, 24822486 (2014).Google Scholar
Pamu, D., Lakshmi Narayana Rao, G., and James Raju, K-C.: Enhanced microwave dielectric properties of (Zr0.8,Sn0.2)TiO4 ceramics with the addition of its own nanoparticles. J. Am. Ceram. Soc. 95, 126132 (2012).Google Scholar
Kawashima, S., Nishida, M., Ueda, I., and Ouchi, H.: Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 66, 421423 (1983).Google Scholar
Kawai, H., Tabuchi, M., Nagata, M., Tukamoto, H., and West, A.R.: Crystal chemistry and physical properties of complex lithium spinels Li2MM'3O8 (M=Mg, Co, Ni, Zn; M'=Ti, Ge). J. Mater. Chem. 8, 12731280 (1998).CrossRefGoogle Scholar
Taghipour Armaki, H., Taheri-Nassaj, E., and Bari, M.: Phase analysis and improvement of quality factor of Li2ZnTi3O8 ceramics by annealing treatment. J. Alloys Compd. 581, 757761 (2013).Google Scholar
George, S. and Sebastian, M.T.: Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 21642166 (2010).CrossRefGoogle Scholar
George, S. and Sebastian, M.T.: Low-temperature sintering and microwave dielectric properties of Li2ATi3O8 (A=Mg, Zn) Ceramics. Int. J. Appl. Ceram. Technol. 8, 14001407 (2011).Google Scholar
Hernandez, V.S. and Torres Martinez, L.M.: Stoichiometry, structures and polymorphism of spinel-like phases, Lil.33xZn2−2xTil+0.67xO4 . J. Mater. Chem. 6, 15331536 (1996).Google Scholar
Kume, S., Yasuoka, M., Omura, N., and Watari, K.: Effects of annealing on dielectric loss and microstructure of aluminum nitride ceramics. J. Am. Ceram. Soc. 88, 32293231 (2005).Google Scholar
Kume, S., Yasuoka, M., Omura, N., and Watari, K.: Effects of annealing on dielectric loss and microstructure of aluminum nitride ceramics. J. Eur. Ceram. Soc. 26, 18311834 (2006).Google Scholar
Bindra Narang, S. and Bahel, S.: Low loss dielectric ceramics for microwave applications: A review. J. Ceram. Process. Res. 11, 316321(2010).Google Scholar
Huang, C-L., Su, C-H., Chang, C-M., and Leite, E.: High Q microwave dielectric ceramics in the Li2(Zn1−xAx)Ti3O8 (A = Mg, Co; x = 0.02–0.1) system. J. Am. Ceram. Soc. 94, 41464149 (2011).Google Scholar
Santhosh Kumar, T., Goswami, D., and Pamu, D.: Effects of CeO2 nanoparticles and annealing temperature on the microwave dielectric properties of MgTiO3 ceramics. Ceram. Int. 40, 11251131 (2013).Google Scholar
Kim, I-T and Kim, Y-H.: Ordering and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 ceramics. J. Mater. Res. 12, 518525 (1997).CrossRefGoogle Scholar
Bieringer, M., Moussa, S.M., Noailles, L.D., Burrows, A., and Kiely, C.J.: Cation ordering, domain growth, and zinc loss in the microwave dielectric oxide Ba3ZnTa2O9-δ . J. Am. Ceram. Soc. 15, 586597 (2003).Google Scholar
Deng, J., Xing, X., Chen, J., Yu, R., and Liu, G.: Cation ordering in the microwave dielectric ceramic BaCd1/3Nb2/3O3 . Scr. Mater. 56(1), 6568 (2007).Google Scholar
Lee, C-T., Lin, Y-C., Huang, C-Y., Su, C-Y., and Hu, C-L.: Cation ordering and dielectric characteristics in barium zinc niobate. J. Am. Ceram. Soc. 90, 483489 (2007).CrossRefGoogle Scholar
Houivet, D., Lamagnere, B., El Fallah, J., and Haussonne, J-M.: Effect of annealing on the microwave properties of (Zr,Sn)TiO4 ceramics. J. Eur. Ceram. Soc. 21, 17271730 (2001).Google Scholar
Rout, D., Babu, G.S., Subramanian, V., and Sivasubramanian, V.: Study of cation ordering in Ba(Yb1/2Ta1/2)O3 by X-ray diffraction and raman spectroscopy. Int. J. Appl. Ceram. Technol. 5, 522528 (2008).Google Scholar
Singh, S-K., Kiran, S-R., and Murthy, V.R.K.: Structural, Raman spectroscopic and microwave dielectric studies on spinel Li2Zn(1−x)NixTi3O8 compounds. Mater. Chem. Phys. 141, 822827 (2013).CrossRefGoogle Scholar
Yang, R., Liu, H., Wang, Y., Jiang, W., Hao, X., Zhan, J., and Liu, S.: Structure and properties of ZnO-containing lithium–iron–phosphate glasses. J. Alloys Compd. 513, 97100 (2012).Google Scholar
Julien, C-M. and Massot, M.: Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Mater. Sci. Eng., B 97, 217230 (2003).Google Scholar
Freer, R. and Azough, F.: Microstructural engineering of microwave dielectric ceramics. J. Eur. Ceram. Soc. 28, 14331441 (2008).CrossRefGoogle Scholar
Penn, S-J., Alford, N-M., Templeton, A., Wang, X., Xu, M., Reece, M., and Schrapel, K.: Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 18851888 (1997).Google Scholar
Leonidov, I-A., Leonidova, O-N., Samigullina, R-F., and Patrakeev, M-V.: Structural aspects of lithium transfer in solid electrolytes Li2x Zn2−3xTi1+xO4 (0.33≤ x≤ 0.67). J. Struct. Chem. 45, 262268 (2004).Google Scholar
Ma, P-P., Yi, L., Liu, X-Q., Li, L., and Chen, X-M.: Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6−x/2Zn0.4−x/2Mgx)1/3Nb2/3)O3 ceramics. J. Am. Ceram. Soc. 96(6), 17951800 (2013).Google Scholar