Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T10:14:12.279Z Has data issue: false hasContentIssue false

Effect of Ag on the primary phase field of the high-Tc (Bi,Pb)-2223 superconductor

Published online by Cambridge University Press:  31 January 2011

W. Wong-Ng
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
L. P. Cook
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
W. Greenwood
Affiliation:
University of Maryland, College Park, Maryland 20742
A. Kearsley
Affiliation:
Mathematical and Computational Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

The subsolidus equilibria and the primary phase field (crystallization field) of the 110 K high-Tc (Bi,Pb)-2223 ([Bi,Pb]:Sr:Ca:Cu) phase have been determined in the presence of Ag under a 92.5% Ar/7.5% O2 atmosphere (volume fraction). A total of 29 six-phase volumes that include both the (Bi,Pb)-2223 and Ag phases was observed. These subsolidus volumes are similar to those observed without the presence of Ag. The compositional range of initial melts of these volumes (mole fraction basis) covers BiO1.5 from 5.6% to 25.3%, PbO from 0.4% to 13.8%, SrO from 8.4% to 31.9%, CaO from 12.2% to 33.3%, CuO from 21.7% to 40.9%, and AgO0.5 from 1.2% to 6.3%. Based on these data, the primary crystallization field for the (Bi,Pb)-2223 phase in the presence of Ag was constructed using the convex hull technique. A section through this “volume” was portrayed by holding the AgO0.5, SrO, and CaO components at the median value of the 29 compositions while allowing projection on the other three axes (BiO1.5, PbO, and CuO). The net effect of Ag on the melt composition is a reduction in the PbO concentration and an increase in the SrO content. Applications of the liquidus data are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kaufman, D.Y., Lanagan, M.T., Dorris, S.E., Dawley, J.T., Bloom, I.D., Hash, M.C., Chen, N., DeGuire, M.R., and Poeppel, R.B., Appl. Supercond. 1, 81 (1993).CrossRefGoogle Scholar
2.Balachandran, U., Iyer, A.N., Haldar, P., Hoehn, J.G. Jr, and Motowidlo, L.R., in Proceedings of The Fourth International Conference and Exhibition: World Congress on Superconductivity, Orlando, FL, June 27–July 1, 1994, edited by Kristen, K. and Burnham, C., (World Congress on Superconductivity, Houston, TX, 1994), Vol. II, p. 639.Google Scholar
3.Sandhage, K.H., Riley, G.N. Jr, and Carter, W., J. Met. 43, 21 (1991).Google Scholar
4.Zeng, R., Liu, H.K., and Dou, S.X., Physica C 300, 49 (1998).CrossRefGoogle Scholar
5.Aksenova, T.D., Bratukhin, P.V., Shavkin, S.V., Melnkov, V.L., Antipova, E.V., Khlebova, N.E., and Shikov, A.K., Physica C 205, 271 (1993).CrossRefGoogle Scholar
6.Luo, J.S., Merchant, N., Maroni, V.A., Dorris, S.E., Lanagan, M.T., and Tani, B.S., J. Am. Ceram. Soc. 78, 2785 (1995).CrossRefGoogle Scholar
7.Kim, W.J., Kwon, S.C., Lee, H.G., Hong, G.W., and Kuk, I.H., Supercond. Sci. Technol. 11, 250 (1998).CrossRefGoogle Scholar
8.Mlchevsky, M.T., Yill, P.L., and Gherardi, L., Appl. Supercond. 2, 33 (1994).Google Scholar
9.Merchant, N., Luo, J.S., Maroni, V.A., Riley, G.N., and Carter, W.L., Appl. Phys. Lett. 65, 1039 (1994).CrossRefGoogle Scholar
10.Müller, J., Eibl, O., Fischer, B., and Herzog, P., Supercond. Sci. Technol. 11, 238 (1998).CrossRefGoogle Scholar
11.Sung, Y.S. and Hellstrom, E.E., Physica C 255, 266 (1995).CrossRefGoogle Scholar
12.Wong-Ng, W., Cook, L.P., and Jiang, F., J. Am. Ceram. Soc. 81, 1829 (1998).CrossRefGoogle Scholar
13.Wong-Ng, W., Cook, L.P., Jiang, F., Greenwood, W., Balachandran, U., and Lanagan, M., J. Mater. Res. 12, 2855 (1977).CrossRefGoogle Scholar
14.Wong-Ng, W., Cook, L.P., and Kearsley, A., J. Res. Natl. Inst. Stand. Technol. 104, 277 (1999).CrossRefGoogle Scholar
15.Wong-Ng, W., Cook, L.P., and Jiang, F., Physica C 272, 87 (1996).CrossRefGoogle Scholar
16.Wong-Ng, W., Cook, L.P., Greenwood, W., and Jiang, F., Physica C 279, 31 (1997).CrossRefGoogle Scholar
17.Wong-Ng, W., Jiang, F., and Cook, L.P., J. Appl. Supercond. 4, 385 (1997).CrossRefGoogle Scholar
18.Barber, C.B., Dobkin, D.P., and Huhdanpaa, H., ACM Trans. on Mathematical Software 22, 469 (1996).CrossRefGoogle Scholar
19.Joo, J., Singh, J.P., Warzynski, T., Grow, A., and Poeppel, R.B., Applied Supercond. 2, 401 (1994).CrossRefGoogle Scholar
20.Mlchevsky, M.T., Villa, P.L., and Gherardi, L., Appl. Supercond. 2, 35 (1994).CrossRefGoogle Scholar
21.Jones, T.E., McGinnis, W.C., Jacobs, E.W., Boss, R.D., Thibado, P.M., Briggs, J.S., and Glad, W.E., Physica C 201, 279 (1992).CrossRefGoogle Scholar
22.Hu, Q.Y., Weber, H.W., Sauerzopf, F.M., Schulz, G.W., Schalk, R.M., Neumuller, H.W., and Dou, S.X., Appl. Phys. Lett. 65, 3008 (1994).CrossRefGoogle Scholar
23.Luo, J.S., Merchant, N., Maroni, V.A., Riley, G.N. Jr, and Carter, W.L., Appl. Phys. Lett. 63, 690 (1993).CrossRefGoogle Scholar
24.Oh, I.S. and Mukherjee, K., Physica C 227, 197 (1994).CrossRefGoogle Scholar
25.Merchant, N., Luo, J.S., Maroni, V.A., Riley, G.N. Jr, and Carter, W.L., Appl. Phys. Lett. 65, 1039 (1994).CrossRefGoogle Scholar
26.Dou, S.X., Liu, H.K., Guo, Y.C., Bhasale, R., Hu, Q.Y., Babic, E., and Kusevic, I., Appl. Supercond. 2, 191 (1994).CrossRefGoogle Scholar
27.Zhou, R., Hults, W.L., Sebring, R.J., Bingert, J.F., Coulter, J.Y., Willis, J.O., and Smith, J.L., Physica C 255, 275 (1995).CrossRefGoogle Scholar
28.Feng, Y., High, Y.E., Larbalestier, D.C., Sung, Y.S., and Hellstrom, E.E., Appl. Phys. Lett. 62, 1553 (1993).CrossRefGoogle Scholar
29.Yamada, Y., Xu, J.Q., Kessler, J., Seibt, E., Goldacker, W., Jahn, W., and Flukiger, R., Physica C 185–189, 2483 (1991).CrossRefGoogle Scholar
30.Lelovic, M., Krishmaraj, P., Eror, N.G., and Balacjandran, U., Physica C 242, 246 (1995).CrossRefGoogle Scholar
31.Singh, J.P., Joo, J., Vasabthamohan, N., and Poeppel, R.B., J. Mater. Res. 8, 2458 (1993).CrossRefGoogle Scholar
32.Larbalestier, D.C., Cai, X.Y., Feng, Y., Edelman, H., Umezawa, A., Riley, G.N. Jr, and Carter, W.L., Physica C 221, 299 (1994).CrossRefGoogle Scholar
33.Dou, S.X., Guo, Y.C., Wang, R.K., Ionescu, M., Liu, H.K., Babic, E., and Kusevic, I., IEEE Trans. Appl. Supercond. 5, 1830 (1995).CrossRefGoogle Scholar
34.Sung, Y.S. and Helstrom, E.E., Physica C 255, 266 (1993).CrossRefGoogle Scholar
35.Luo, J.S., Merchant, N., Marni, V.A., Gruen, D.M., Tani, B.S., Carter, W.L., Riley, G.N. Jr, and Sandhage, K.H., J. Appl. Phys. 72, 2385 (1992).CrossRefGoogle Scholar
36.Guo, Y.C., Liu, H.K., and Dou, S.X., J. Mater. Res. 8, 2187 (1993).CrossRefGoogle Scholar
37.Oota, A., Horio, T., Ohba, K., and Iwasaki, K., J. Appl. Phys. 71, 5997 (1992).CrossRefGoogle Scholar
38.Funahashi, R., Matsubara, I., Ueno, K., and Ishikawa, H., Physica C 311, 107 (1999).CrossRefGoogle Scholar
39.MacManus-Driscoll, J.I. and Bravman, J.C., J. Am. Ceram. Soc. 77, 2305 (1994).CrossRefGoogle Scholar
40.Majewski, P., Sotelo, A., Szillat, H., Kaesche, S., and Aldinger, F., Physica C 275, 47 (1997).CrossRefGoogle Scholar
41.Majewski, P., Supercond. Sci. Technol. 10, 453 (1997).CrossRefGoogle Scholar
42.McCallum, R.W., Dennis, K.W., Margulies, L., and Kramer, M.J., in Proceedings of the 1993 Fall TMS Meetings, edited by Balachandran, U., Collings, E.W., and Goyal, A. (TMS, Warrendale, PA, 1993), p. 195.Google Scholar
43.Shao, Z.B., Liu, K.R., and Liu, L.Q., J. Am. Ceram. Soc. 76, 2663 (1993).CrossRefGoogle Scholar
44.Hu, Q.Y., Weber, H.W., Sauerzopf, F.M., Schulz, G.W., Schalk, R.M., Neumuller, H.W., and Dou, S.X., Appl. Phys. Lett. 65, 3008 (1994).CrossRefGoogle Scholar
45.Liu, H.K., Dou, S.X., Ionescu, M., Shao, Z.B., Liu, K.R., and Liu, L.Q., J. Mater. Res. 10, 2933 (1995).CrossRefGoogle Scholar
46.Osamura, K. and Maruyama, T., Proceedings of the Fifth U.S.Japan Workshop on High Tc Superconductors, edited by Tachikawa, K., organized by New Superconducting Materials Forum (The Society of Non-Traditional Technology, Tsukuba, Japan, Nov. 1992), p. 75.Google Scholar
47.Tetenbaum, M., Hash, M., Tani, B.S., Luo, J.S., and Maroni, V.A., Physica C 249, 396 (1995).CrossRefGoogle Scholar
48.Moon, R.J., Trumble, K.P., and Bowman, K.J., J. Mater. Res. 14, 652 (1999).CrossRefGoogle Scholar
49.Assal, J., Doctoral Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (1998).Google Scholar
50.Carter, W.L., Riley, G.N., Luo, J.S., Merchant, N., and Maroni, V.A., Appl. Supercond. 1, 1523 (1993).CrossRefGoogle Scholar
51.Luo, J.S., Merchant, N., Maroni, V.A., Gruen, D.M., Tani, B.S., Carter, W.L., Riley, G.N. Jr, and Sandhage, K.H., J. Appl. Phys. 72, 2385 (1992).CrossRefGoogle Scholar
52.Wong-Ng, W. and Cook, L.P., in Superconductivity and Ceramic Superconductors II (Ceramic Trans. 18, American Ceramic Society, Westerville, OH, 1991), p. 73.Google Scholar
53.Wong-Ng, W. and Cook, L.P., Adv. X-ray Anal. 35, 633 (1992).Google Scholar
54.Wong-Ng, W. and Cook, L.P., J. Amer. Ceram. Soc. 77, 1883 (1994).CrossRefGoogle Scholar
55.Heinrich, K.F.J, Electron Beam X-Ray Microanalysis (Van Nostrand Reinhold, New York, 1981), p. 578.Google Scholar
56.Fiori, C.E., Swyt, C.R., and Myklebust, R.L., NIST/NIH Desktop Spectrum Analyzer Program and X-Ray Database, NIST Standard Reference Database No. 36 NIST, Gaithersburg, MD, (1991).Google Scholar
57.Shannon, R.D. and Prewitt, C.T., Acta Crystallogr. 25, 925 (1969).CrossRefGoogle Scholar
58.Cook, L.P. and Wong-Ng, W., in Impact of Recent Advances in Synthesis and Processing of Ceramic Superconductors, edited by Wong-Ng, W., Balachandran, U., and Bhalla, A.S. (Ceram. Trans. 84, American Ceramics Society, Westerville, OH, 1998), p. 71.Google Scholar