Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T02:20:43.116Z Has data issue: false hasContentIssue false

Dynamic responses of reactive metallic structures under thermal and mechanical ignitions

Published online by Cambridge University Press:  28 September 2012

Haoyan Wei
Affiliation:
Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164-2816
Choong-Shik Yoo*
Affiliation:
Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164-2816
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have studied dynamic thermo-mechano-chemical responses of reactive metallic systems, both in clouds of small oxygen-free particles (∼1–10 μm in diameter) produced by fracturing Zr-rich bulk metallic glass and in pure Zr metal foils (∼25 μm thin), under thermal (laser ablation or pulse electrical heating) and mechanical loadings. The mechanical fracture/fragmentation and fragments reactions were time resolved using an integrated set of fast six-channel optical pyrometer, high-speed microphotographic camera, and time- and angle-resolved synchrotron x-ray diffraction. These small-scale tabletop real-time experiments performed on or near surfaces of reactive metals provide fundamental data, in atomistic scales or of particle clouds, regarding fragmentation mechanics, combustion mechanisms and kinetics, and dynamics of energy release under thermal and mechanical loadings. We present the results of pure Zr and Zr-rich amorphous metals, not only signifying diversified combustion mechanisms depending on microstructures, particle sizes, oxygen pressure, and ignition conditions but also providing fundamental data that can be used to develop and validate thermochemical and mechanochemical models for reactive materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yetter, R.A., Risha, G.A., and Son, S.F.: Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32, 1819 (2009).CrossRefGoogle Scholar
Dlott, D.D.: Thinking big (and small) about energetic materials. Mater. Sci. Technol. 22, 463 (2006).CrossRefGoogle Scholar
Dreizin, E.L.: Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35, 141 (2009).CrossRefGoogle Scholar
Holian, B.L.: Molecular Dynamics Simulations of Detonation Phenomena (ITRI Press, McLean, VA, 2004).Google Scholar
Park, K., Lee, D., Rai, A., Mukherjee, D., and Zachariah, M.R.: Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109, 7290 (2005).CrossRefGoogle ScholarPubMed
Granier, J.J. and Pantoya, M.L.: Laser ignition of nanocomposite thermites. Combust. Flame 138, 373 (2004).CrossRefGoogle Scholar
Skinner, D., Olson, D., and Block-Bolten, A.: Electrostatic discharge ignition of energetic materials. Propellants Explos. Pyrotech. 23, 34 (1998).3.0.CO;2-V>CrossRefGoogle Scholar
Ewald, K.H., Anselmi-Tamburini, U., and Munir, Z.A.: Combustion of zirconium powders in oxygen. Mater. Sci. Eng., A 291, 118 (2000).CrossRefGoogle Scholar
Gill, R.J., Badiola, C., and Dreizin, E.L.: Combustion times and emission profiles of micron-sized aluminum particles burning in different environments. Combust. Flame 157, 2015 (2010).CrossRefGoogle Scholar
Trunov, M.A., Schoenitz, M., and Dreizin, E.L.: Ignition of aluminum powders under different experimental conditions. Propellants Explos. Pyrotech. 30, 36 (2005).CrossRefGoogle Scholar
Huang, Y., Risha, G.A., Yang, V., and Yetter, R.A.: Effect of particle size on combustion of aluminum particle dust in air. Combust. Flame 156, 5 (2009).CrossRefGoogle Scholar
Trunov, M.A., Schoenitz, M., and Dreizin, E.L.: Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust. Theor. Model. 10, 603 (2006).CrossRefGoogle Scholar
Wei, H. and Yoo, C-S.: Kinetics of small single particle combustion of zirconium alloy. J. Appl. Phys. 111, 023506 (2012).CrossRefGoogle Scholar
Dreizin, E.L.: Effect of phase changes on metal-particle combustion processes. Combust. Explo. Shock. 39, 681 (2003).CrossRefGoogle Scholar
Trunov, M.A., Schoenitz, M., Zhu, X.Y., and Dreizin, E.L.: Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust. Flame 140, 310 (2005).CrossRefGoogle Scholar
Dreizin, E.L.: Phase changes in metal combustion. Prog. Energy Combust. Sci. 26, 57 (2000).CrossRefGoogle Scholar
Molodetsky, I.E., Dreizin, E.L., and Law, C.K.: Evolution of particle temperature and internal composition for zirconium burning in air. Proc. Combust. Inst. 26, 1919 (1996).CrossRefGoogle Scholar
Wei, H. and Yoo, C.S.: Dynamic structural and chemical responses of energetic solids. in Advances in Energetic Materials Research, edited by Manaa, M.R., Yoo, C.-S., Reed, E.J., and Strano, M.S. (Mater. Res. Soc. Symp. Proc. 1405, Warrendale, PA, 2012). mrsf11-1405-y02-01.Google Scholar
Yoo, C.S., Wei, H., Chen, J.-Y., Shen, G., Chow, P., and Xiao, Y.: Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions. Rev. Sci. Instrum. 82, 113901 (2011).CrossRefGoogle ScholarPubMed
Trenkle, J.C., Koerner, L.J., Tate, M.W., Gruner, S.M., Weihs, T.P., and Hufnagel, T.C.: Phase transformations during rapid heating of Al/Ni multilayer foils. Appl. Phys. Lett. 93, 081903 (2008).CrossRefGoogle Scholar
Trenkle, J.C., Koerner, L.J., Tate, M.W., Walker, N., Gruner, S.M., Weihs, T.P., and Hufnagel, T.C.: Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils. J. Appl. Phys. 107, 113511 (2010).CrossRefGoogle Scholar
Wei, H., Yoo, C.-S., Chen, J.-Y., and Shen, G.: Oxygen-diffusion limited metal combustions in Zr, Ti, and Fe foils: Time- and angle-resolved x-ray diffraction studies. J. Appl. Phys. 111, 063528 (2012).CrossRefGoogle Scholar
Fadenberger, K., Gunduz, I.E., Tsotsos, C., Kokonou, M., Gravani, S., Brandstetter, S., Bergamaschi, A., Schmitt, B., Mayrhofer, P.H., Doumanidis, C.C., and Rebholz, C.: In situ observation of rapid reactions in nanoscale Ni-Al multilayer foils using synchrotron radiation. Appl. Phys. Lett. 97, 144101 (2010).CrossRefGoogle Scholar
Haynes, W.M.: CRC Handbook of Chemistry and Physics, 92nd ed. (CRC Press, Boca Raton, FL, 2011).Google Scholar
Jiang, W.H., Liu, F.X., Liao, H.H., Choo, H., Liaw, P.K., Edwards, B.J., and Khomami, B.: Temperature increases caused by shear banding in as-cast and relaxed Zr-based bulk metallic glasses under compression. J. Mater. Res. 23, 2967 (2008).CrossRefGoogle Scholar
Bruck, H.A., Rosakis, A.J., and Johnson, W.L.: The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 (1996).CrossRefGoogle Scholar
Gilbert, C.J., Ager, J.W., Schroeder, V., Ritchie, R.O., Lloyd, J.P., and Graham, J.R.: Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 74, 3809 (1999).CrossRefGoogle Scholar
Olsen, S.E. and Beckstead, M.W.: Burn time measurements of single aluminum particles in steam and CO2 mixtures. J. Propul. Power 12, 662 (1996).CrossRefGoogle Scholar
Dreizin, E.L.: On the mechanism of asymmetric aluminum particle combustion. Combust. Flame 117, 841 (1999).CrossRefGoogle Scholar
Rossi, S., Dreizin, E.L., and Law, C.K.: Combustion of aluminum particles in carbon dioxide. Combust. Sci. Technol. 164, 209 (2001).CrossRefGoogle Scholar
Wei, H. and Yoo, C.S.: in preparation.Google Scholar
Kovalev, D., Shkiro, V., and Ponomarev, V.: Dynamics of phase formation during combustion of Zr and Hf in air. Int. J. Self Propag. High Temp. Synth. 16, 169 (2007).CrossRefGoogle Scholar
ASM Alloy Phase Diagrams Center: Diagram No. 103569, 101191.Google Scholar
Arai, T. and Hirabayashi, M.: Oxygen ordering in the Zr-O alloy: A structural, calorimetric and resistometric study. J. Less-Common Met. 44, 291 (1976).CrossRefGoogle Scholar
Arroyave, R., Kaufman, L., and Eagar, T.W.: Thermodynamic modeling of the Zr-O system. Calphad 26, 95 (2002).CrossRefGoogle Scholar
Assovskiy, I.G., Kolesnikov-Svinarev, V.I., Kuzhnetsov, G.P., and Zhigalina, O.M.: Gravity effect in aluminum droplet ignition and combustion. In 5th International Microgravity Combustion Workshop, Cleveland, OH, 1999. Proceedings of the Fifth International Microgravity Combustion Workshop, NASA, May 18–20, 1999, Cleveland, OH; pp. 223–226.Google Scholar
Glassman, I.: Combustion, 3rd ed. (Academic Press, Inc., San Diego, CA, 1996).Google Scholar
Wu, W.F., Han, Z., and Li, Y.: Size-dependent “malleable-to-brittle” transition in a bulk metallic glass. Appl. Phys. Lett. 93, 061908 (2008).CrossRefGoogle Scholar
Murali, P. and Ramamurty, U.: Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 53, 1467 (2005).CrossRefGoogle Scholar