Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T09:07:07.826Z Has data issue: false hasContentIssue false

Dynamic cleavage in ductile materials

Published online by Cambridge University Press:  03 March 2011

I.-H. Lin
Affiliation:
Fracture and Deformation Division, National Bureau of Standards, Boulder, Colorado 80303
R. M. Thomson
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, Maryland 20899
Get access

Abstract

Ductile materials are found to sustain brittle fracture when the crack moves at high speed. This fact poses a paradox under current theories of dislocation emission, because even at high velocities, these theories predict ductile behavior. A theoretical treatment of time-dependent emission and cleavage is given which predicts a critical velocity above which cleavage can occur without emission. Estimates suggest that this velocity is in the neighborhood of the sound velocity. The paper also discusses the cleavage condition under mixed mode loading, and concludes that the cleavage condition involves solely the mode I loading, with possible sonic emission under such loadings

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kelly, A., Tyson, W., and Cottrell, A. H., Philos. Mag. 29, 295 (1967).Google Scholar
2Rice, J. and Thomson, R., Philos. Mag. 29, 73 (1974).CrossRefGoogle Scholar
3Chang, S. J. and Ohr, S. M., J. Appl.Phys. 52, 7174 (1981).CrossRefGoogle Scholar
4Weertman, J., Philos. Mag. 43, 1103 (1981).CrossRefGoogle Scholar
5Lin, I.-H. and Thomson, R., Acta Metall. 34, 187 (1986).CrossRefGoogle Scholar
6Ohr, S. M., Mater. Sci. Eng. (to be published).Google Scholar
7Wilsdorf, H. G. F., Mater. Sci. Eng. 59, 1 (1983).CrossRefGoogle Scholar
8Vehoff, H. and Neumann, P., Acta Metall. 28, 265 (1980).CrossRefGoogle Scholar
9Hockey, B., Fracture Mechanics in Ceramics, edited by Bradt, R., Hasselman, D., and Lange, F. (Plenum, New York, 1983), Vol. 6, p. 637.Google Scholar
10Pugh, E. N., in Atomistics of Fracture, edited by Latanision, R. M. and Pickins, J. R. (Plenum, New York, 1983), p. 209.Google Scholar
11Sieradsky, K ., Sabatini, R. L., and Newman, R. C., Met. Trans. 15A, 1941 (1984).CrossRefGoogle Scholar
12Smith, E., Proceedings of the Conference on Physical Basis of Yield and Fracture (Institute of Physics and the Physical Society, London, 1966), p. 36.Google Scholar
13Hirth, J. and Lothe, J., Theory of Dislocations (McGraw-Hill, NewYork, 1982).Google Scholar
14Eshelby, J., Physics of Strength and Plasticity, E. Orowan Anniversary Volume, edited by Argon, A. (MIT Press, Cambridge, 1969), p. 263.Google Scholar
15Freund, L. B., Mech. Phys. Sol. 20, 129 (1972).CrossRefGoogle Scholar
16Eshelby, J., Solid State Phys. 3, 79 (1956).CrossRefGoogle Scholar
17Atkinson, C. and Eshelby, J., Int. J. Fracture 4, 3 (1968).CrossRefGoogle Scholar
18Sih, G. C., Int. J. Fracture 4, 51 (1967).CrossRefGoogle Scholar
19Radok, J. R., Quart. J. Appl. Math. 14, 289 (1956).CrossRefGoogle Scholar
20Markenskoff, X., Dislocation Modeling of Physical Systems, edited by Ashby, M., Bullough, R., Hartley, C., and Hirth, J. (Pergamon, New York, 1981), p. 244.CrossRefGoogle Scholar
21Freund, L. B., Int. J. Eng. Sci. 12, 179 (1974).CrossRefGoogle Scholar