Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T13:44:50.854Z Has data issue: false hasContentIssue false

The dose, temperature, and projectile-mass dependence for irradiation-induced amorphization of CuTi

Published online by Cambridge University Press:  31 January 2011

J. Koike
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
P. R. Okamoto
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
L. E. Rehn
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
M. Meshii
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

CuTi was irradiated with 1-MeV Ne+, Kr+, and Xe+ in the temperature range from 150 to 563 K. The volume fraction of the amorphous phase produced during room temperature irradiation with Ne+ and Kr+ ions was determined as a function of ion dose from measurements of the integrated intensity of the diffuse ring in electron diffraction patterns. The results, analyzed by Gibbons' model, indicate that direct amorphization occurs along a single ion track with Kr+, but the overlapping of three ion tracks is necessary for amorphization with Ne+. The critical temperature for amorphization increases with increasing projectile mass from electron to Ne+ to Kr+. However, the critical temperatures for Kr+ and Xe+ irradiations were found to be identical, and very close to the thermal crystallization temperature of an amorphous zone embedded in the crystalline matrix. Using the present observations, relationships between the amorphization kinetics and the displacement density along the ion track, and between the critical temperature and the stability of the irradiation-induced damage, are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Swanson, M.L.Parsons, J.R. and Hoelke, C.W.Radiat. Eff. 9, 249 (1971).Google Scholar
2Thompson, D. A. and Walker, R. S.Radiat. Eff. 36, 91 (1978).Google Scholar
3Baranova, E. C.Gusev, V. M.Martynenko, Y. V.Starinin, C.V. and Haibullin, I.B.Radiat. Eff. 25, 157 (1975).Google Scholar
4Howe, L. M.Rainville, M. H.Haugen, H. K. and Thompson, D. A.Nucl. Instrum. Methods 170, 419 (1980).CrossRefGoogle Scholar
5Morehead, F.F. Jr. and Crowder, B.L.Radiat. Eff. 6, 27 (1970).Google Scholar
6Gibbons, J. F.Proc. of IEEE 60, 1062 (1972).CrossRefGoogle Scholar
7Dennis, J.R. and Hale, E.B.J. Appl. Phys. 49, 1119 (1978).Google Scholar
8Jaouen, C.Delafond, J. and Riviere, J.P.J. Phys. F 17, 335 (1987).Google Scholar
9Simonen, E. P.Nucl. Instrum. Methods B 16, 198 (1986).CrossRefGoogle Scholar
10Brimhall, J.L.Kissinger, H.E. and Pelton, A.R.Radiat. Eff. 90, 241 (1985).CrossRefGoogle Scholar
11Parkin, D.M. and Elliott, R. O.Nucl. Instrum. Methods B 16, 193 (1986).CrossRefGoogle Scholar
12Moine, P.Riviere, J.P.Ruault, M.O.Chaumont, J.Pelton, A.R. and Sinclair, R.Nucl. Instrum. Methods B 7/8, 20 (1985).Google Scholar
13Woo, O.T.J. Nucl. Mater. 125, 120 (1984).Google Scholar
14Koike, J.Luzzi, D. E.Meshii, M. and Okamoto, P. R.Mater. Res. Soc. Symp. Proc. 74, 425 (1987).CrossRefGoogle Scholar
15Clark, G.J.LeGoues, F. K.Marwick, A.D.Laibowitz, R.B. and Koch, R.Appl. Phys. Lett. 51, 1462 (1987).Google Scholar
16Biersack, J. P. and Haggmark, L. G.Nucl. Instrum. Methods 174, 257 (1980).Google Scholar
17Luzzi, D. E.Mori, H.Fujita, H. and Meshii, M.Acta Metall. 34, 629 (1986).Google Scholar
18Marshall, A. F.Lee, Y. S. and Stevenson, D. A.Acta Metall. 35, 61 (1987).CrossRefGoogle Scholar
19Grzeta, B.Stubicar, M.Cowlam, N. and Trojko, R.Philos. Mag. A 55, 227 (1987).Google Scholar
20Carter, G. and Webb, R.Radiat. Eff. Lett. 43, 19 (1979).CrossRefGoogle Scholar
21Averback, R. S.Benedek, R. and Merkle, K. L.Phys. Rev. B 18, 4156 (1978).Google Scholar
22Lindhard, J.Nielsen, V. and Scharff, M.Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 36, 10 (1968).Google Scholar
23Lehman, C.Interaction of Radiation with Solids and Elementary Defect Production (North Holland, 1977), p. 110.Google Scholar
24Pedraza, D.F.J. Mater. Res. 1, 425 (1986).Google Scholar
25Seeger, A.Radiation Damage in Solids (IAEA, Vienna, 1962), Vol. 1, p. 101.Google Scholar
26Blinkman, J. A.J. Appl. Phys. 25, 961 (1954).CrossRefGoogle Scholar
27Jenkins, M.L. and Wilkens, M.Philos. Mag. 34, 1155 (1976).Google Scholar
28Brimhall, J.L.Nucl. Instrum. Methods B 7/8, 26 (1985).CrossRefGoogle Scholar
29Delafond, J.Jaouen, C.Riviere, J.P. and Fayoux, C.Mater. Sci. and Eng. 69, 117 (1985).Google Scholar
30Koike, J.Okamoto, P. R.Rehn, L. E. and M. Meshii (to be published).Google Scholar
31Linnros, J. and Holmen, G.J. Appl. Phys. 62, 4737 (1987).Google Scholar
32Linnros, J.Brown, W. L. and Elliman, R. G.Mater. Res. Soc. Symp. 100, 369 (1988).Google Scholar