Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T18:01:39.407Z Has data issue: false hasContentIssue false

Doping and crystallization of amorphous SiGe films with an excimer (KrF) laser

Published online by Cambridge University Press:  03 March 2011

S. Krishnan*
Affiliation:
Department of Chemical Engineerng, Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699
M.I. Chaudhry*
Affiliation:
Department of Electrical Engineering, Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699
S.V. Babu
Affiliation:
Department of Chemical Engineering, Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699
*
a)Present address: Ultra Clean Technology, Menlo Park, California 94025.
b)Present address: CHEMI Laboratories, Watervliet, New York 12189.
Get access

Abstract

Amorphous silicon germanium (a-SiGe) films, deposited on silicon substrates at room temperature in a molecular beam epitaxy system, were transformed into a single-crystal film and doped with phosphorus by exposure to KrF laser pulses. Electron channeling patterns showed that laser exposure resulted in crystallization of the undoped a-SiGe films. The SiGe films were doped by laser irradiation, using a phosphorus spin-on-dopant. The sheet resistance of the doped films decreased with increasing numbers of pulses, reaching a value of about ∼ 5 × 104 ohms/□ after 15 pulses. I-V data from mesa-type n-SiGe/p-Si diode devices were used to determine the effect of laser processing on the quality of the SiGe films.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iyer, S. S., Patton, G. L., Stork, J. C., Meyerson, B. S., and Harame, D. L., IEEE Trans. Electron. Devices 36, 2043 (1989).CrossRefGoogle Scholar
2People, R., IEEE J. Quantum Electronics QE–22, 1696 (1986).CrossRefGoogle Scholar
3King, T. J., Saraswat, K. C., and Pnester, J.R., IEEE Electron. Device Lett. EDL–12, 584 (1991).CrossRefGoogle Scholar
4Wu, I. W., Chiang, A., Fuse, M., Ovecuglu, L., and Huang, T. Y., J. Appl. Phys. 65, 4036 (1989).CrossRefGoogle Scholar
5Carey, P. G., Sigmon, T. W., Press, R. L., and Fahlen, T. S., IEEE Electron Device Lett. EDL–6, 291 (1985).CrossRefGoogle Scholar
6Narayan, J., Young, R. T., Wood, R. F., and Christie, W. H., Appl. Phys. Lett. 33, 338 (1978).CrossRefGoogle Scholar
7Turner, G. B., Tarrant, D., Pollock, G., Presley, R., and Press, R., Appl. Phys. Lett. 39, 967 (1981).CrossRefGoogle Scholar
8Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., J. Electron. Mater. 19, 241 (1990).CrossRefGoogle Scholar
9Foulan, F., Fogarassy, E., Slaoui, A., Fuchs, C., Unamuno, S., and Siffert, P., Appl. Phys. A45, 361 (1988).CrossRefGoogle Scholar
10Kato, S., Saeki, H., Wada, J., and Matsumoto, S., J. Electrochem. Soc. Solid State Sci. Technol. 135, 1030 (1988).Google Scholar
11Deutsh, T. F., Ehrilch, D. J., Rathman, D. D., Silversmith, D. J., and Osgood, R. M., Appl. Phys. Lett. 39, 825 (1981).CrossRefGoogle Scholar
12Gat, A., Gerzberg, L., Gibbons, J. F., Magee, T. J., Peng, J., and Hong, J. D., Appl. Phys. Lett. 33, 775 (1978).CrossRefGoogle Scholar
13Narayan, J., White, C. W., Aziz, M. J., Stritzker, B., and Walthuis, A., J. Appl. Phys. 57, 564 (1985).CrossRefGoogle Scholar
14Narayan, J. and White, C. W., Appl. Phys. Lett. 44, 35 (1984).CrossRefGoogle Scholar
15Narayan, J., White, C. W., Holland, O. W., and Aziz, M. J., J. Appl. Phys. 56, 1821 (1984).CrossRefGoogle Scholar
16Joy, D. C., Newbury, D. E., and Davidson, D. L., J. Appl. Phys. 53, R81 (1982).CrossRefGoogle Scholar
17Chang, G. K., Cams, T. K., Rhee, S. S., and Wang, K. L., J. Electro-Chem. Soc. 138, 202 (1991).CrossRefGoogle Scholar