Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T13:10:32.227Z Has data issue: false hasContentIssue false

Domain pattern formation in ferroelastic Pb3(PO4)2 by computer simulation

Published online by Cambridge University Press:  31 January 2011

K. Parlinski
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–77, Japan
Y. Kawazoe
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–77, Japan
Get access

Abstract

A model of lead phosphate, which describes the rhombohedral-monoclinic phase transition, is used to form domain patterns in the annealing process. The obtained domain structures show W and W′ types of domain walls in agreement with the stress-free laws proposed in Sapriel's theory. The observed W domain walls are parallel to the ternary symmetry axis, while the W′ ones are tilted with respect to the same axis. The antiphase domain walls take no preferential orientations, and remain parallel to the ternary axis. The calculated density of the potential energy of the domain wall of type W is estimated to be Edw = 49 K/Å2 at T = 300 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Keppler, U., Z. Kristallogr. 132, 228 (1970).CrossRefGoogle Scholar
2.Torrès, J., Phys. Status Solidi (b) 71, 141 (1975).CrossRefGoogle Scholar
3.Bradley, C. J. and Cracknell, A. P., The Mathematical Theory of Symmetry in Solids (Clarendon Press, Oxford, 1972), p. 105.Google Scholar
4.Salje, E., Graeme-Barber, A., Carpenter, M. A., and Bismayer, U., Acta Cryst. B 49, 387 (1993).CrossRefGoogle Scholar
5.Brixner, L. H., Bierstedt, P. E., Jaep, W. F., and Barkley, J. R., Mater. Res. Bull. 8, 497 (1973).CrossRefGoogle Scholar
6.Dudnik, E. F., Sinyakov, R. V., Gene, V. V., and Vagin, S. V., Sov. Phys. Solid State 17, 1212 (1975).Google Scholar
7.Chabin, M., Gilletta, F., and Ildefonse, J. P., J. Appl. Cryst. 10, 247 (1977).CrossRefGoogle Scholar
8.Sapriel, J., Phys. Rev. B 12, 5128 (1975).CrossRefGoogle Scholar
9.Bismayer, U. and Salje, E., Acta Crystallogr. Sec. A 37, 145 (1981).CrossRefGoogle Scholar
10.Torrès, J., Roucau, C., and Ayroles, R., Phys. Status Solidi (a) 70, 659 (1982).CrossRefGoogle Scholar
11.Torrès, J., Roucau, C., and Ayroles, R., Phys. Status Solidi (a) 70, 193 (1982).CrossRefGoogle Scholar
12.Roucau, C., Tanaka, M., Torrès, J., and Ayroles, R., J. Microsc. Spectrosc. Electron. 4, 603 (1979).Google Scholar
13.Wruck, B., Salje, E., Zhang, M., Abraham, T., and Bismayer, U., Phase Trans. 48, 135 (1994).CrossRefGoogle Scholar
14.Bismayer, U., Hensler, J., Salje, E., and Güttler, B., Phase Trans. 48, 149 (1994).CrossRefGoogle Scholar
15.Yamada, Y., Phys. Rev. B 46, 5906 (1992).CrossRefGoogle Scholar
16.Yamada, Y. and Uesu, Y., Solid State Commun. 81, 777 (1992).CrossRefGoogle Scholar
17.Jeong, S. Y., Jang, M. S., and Lim, A. R., Phys. Rev. B 48, 13 340 (1993).Google Scholar
18.Parlinski, K. and Kawazoe, Y., J. Phys. I. (France) 7, 153 (1997).CrossRefGoogle Scholar
19.Wood, I. G., Wadhawan, V. K., and Glaser, A. M., J. Phys. C: Solid State Phys. 13, 5155 (1980).CrossRefGoogle Scholar
20.Joffrin, C., Benoit, J. P., Currat, R., and Lambert, M., J. Physique 40, 1185 (1979).CrossRefGoogle Scholar
21.Guimaraes, D. M. C., Phase Trans. 1, 143 (1979).CrossRefGoogle Scholar
22.Bismayer, U., Salje, E., and Joffrin, C., J. Phys. (France) 43, 1379 (1982).CrossRefGoogle Scholar