Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T15:56:40.539Z Has data issue: false hasContentIssue false

Dissolution Kinetics of Spinel Lithium Manganate and its Relation to Capacity Fading in Lithium Ion Batteries

Published online by Cambridge University Press:  31 January 2011

Chung-Hsin Lu*
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taiwan, R.O.C.
Shang-Wei Lin
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taiwan, R.O.C.
*
a)Address all correspondence to this author.
Get access

Abstract

The dissolution behavior and kinetics of spinel lithium manganate LiMn2O4 with different particle sizes have been investigated in this study. The dissolution of manganese cations from LiMn2O4 is confirmed to occur when LiMn2O4 particles are immersed in the electrolytes. The amount of dissolved manganese ions markedly increases with a rise in temperature and a decrease in particle size, which implies that the capacity fading of LiMn2O4 at elevated temperatures is associated with manganese dissolution. On the basis of the isothermal analysis of reaction kinetics, the rate of manganese dissolution from LiMn2O4 is dominated by the rate of dissolution reaction. Smaller particles exhibit a larger reaction rate constant and higher activation energy of the dissolution process than the larger ones. Therefore, an increase in temperature has a more pronounced effect on the dissolution reaction of small particles than on that of large particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Momchilov, A., Manev, V., Momchilov, A., Nassalevska, A., and Kozawa, A., J. Power Sources 41, 305 (1993).CrossRefGoogle Scholar
2.Hurimoto, H., Suzuoka, K., Murakami, T., Xia, Y., Nakamura, H., and Yoshio, M., J. Electrochem. Soc. 142, 2178 (1995).Google Scholar
3.Gummow, R.J., Kock, A. de, and Thackeray, M.M., Solid State Ion ics 69, 59 (1994).CrossRefGoogle Scholar
4.Ohzuku, T., Kitagawa, M., and Hirai, T., J. Electrochem. Soc. 137, 769 (1990).CrossRefGoogle Scholar
5.Tarascon, J.M., Wang, E., and Shokoohi, F.K., J. Electrochem. Soc. 138, 2859 (1991).CrossRefGoogle Scholar
6.Xia, Y., Zhou, Y., and Yoshio, M., J. Electrochem. Soc. 144, 2593 (1997).CrossRefGoogle Scholar
7.Xia, Y. and Yoshio, M., J. Power Sources 66, 129 (1997).CrossRefGoogle Scholar
8.Xia, Y., Hideshima, Y., Kumada, N., Nagano, M., and Yoshio, M., J. Power Sources 24, 24 (1998).CrossRefGoogle Scholar
9.Tarascon, J.M. and Guyomard, D., Electrochim. Acta 9, 1221 (1993).CrossRefGoogle Scholar
10.Pasquier, A. du, Blyr, A., Courjal, P., Larcher, D., Amatucci, G., Gerand, B., and Tarascon, J.M., J. Electrochem. Soc. 146, 428 (1999).CrossRefGoogle Scholar
11.Amatucci, G.G., Blyr, A., Sigala, C., Alfonse, P., and Tarascon, J.M., Solid State Ionics 104, 13 (1997).CrossRefGoogle Scholar
12.Nishimura, K., Douzono, T., Kasai, M., Andou, H., Muranaka, Y., and Kozono, Y.. J. Power Sources 81, 420 (1999).CrossRefGoogle Scholar
13.Antonini, A., Bellitto, C., Pasquali, M., and Pistoia, G., J. Electrochem. Soc. 145, 2726 (1999).CrossRefGoogle Scholar
14.Inoue, T. and Sano, M., J. Electrochem. Soc. 145, 3704 (1998).CrossRefGoogle Scholar
15.Tarascon, J.M. and Guyomard, D., Solid State Ionics 69, 293 (1994).CrossRefGoogle Scholar
16.Xia, Y., Kumada, N., and Yoshio, M., J. Power Sources 90, 135 (2000).CrossRefGoogle Scholar
17.Gummow, R.J., Kock, A. de, and Thackeray, M.M., Solid State Ionics 69, 59 (1994).CrossRefGoogle Scholar
18.Cho, J., Solid State Ionics 138, 267 (2001).CrossRefGoogle Scholar
19.Levenspiel, O., Chemical Reaction Engineering (John Wiley & Sons, New York, 1972), pp. 357371.Google Scholar
20.Blyr, A., Sigala, C., Amatucci, G., Guyomard, D., Chabre, Y., and Tarascon, J.M., J. Electrochem. Soc. 145, 194 (1998).CrossRefGoogle Scholar