Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T12:21:50.542Z Has data issue: false hasContentIssue false

Dislocations emission and crack extension at the atomistic crack tip in body-centered-cubic metal Mo

Published online by Cambridge University Press:  31 January 2011

Qiheng Tang
Affiliation:
LNM Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Tzuchiang Wang
Affiliation:
LNM Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Get access

Abstract

The behaviors of a crack in body-centered-cubic metal Mo under different loading modes were studied using the molecular dynamics method. Dislocation emission was observed near the crack tip in response to mode II loading with θ = 0° in which θ is the inclination angle of the slip plane with respect to the crack plane, and two full dislocations were observed at the stress level of KII = 1.17 MPa m1/2 without any evidence of crack extension. Within the range of 0° ≤ θ ≤ 45°, crack extension was observed in response to mode I loading, and the effect of crystal orientation on the crack propagation was studied. The crack propagated along the [111] slip direction without any evidence of dislocations emission.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Griffith, A.A., Philos. Trans. R. Soc. London A 221, 163 (1920).Google Scholar
2.Chiao, Y.H. and Clarke, D.R., Acta Metall. 47, 203 (1989).CrossRefGoogle Scholar
3.George, A. and Michot, G., Mater. Sci. Eng. A 164, 118 (1993).CrossRefGoogle Scholar
4.Ohr, S.M., Mater. Sci. Eng. 72, 1 (1985).CrossRefGoogle Scholar
5.Wang, J.S. and Anderson, P.M., Acta Metall. 39, 779 (1991).CrossRefGoogle Scholar
6.Hiroaki, K., Akira, Q., Haruyoshi, K., and Hideo, Y., Trans. Jpn. Inst. Met. 26, 341 (1985).Google Scholar
7.Beltz, G.E. and Wang, J.S., Acta Metall. 40, 1675 (1992).CrossRefGoogle Scholar
8.Zhang, H., King, A.H., and Thomson, R., J. Mater. Res. 6, 314 (1991).CrossRefGoogle Scholar
9.Schoeck, G., Philos., Mag. A. 74, 419 (1991).Google Scholar
10.Rice, J.R., J. Mech. Phys. Solids 40, 239 (1992).CrossRefGoogle Scholar
11.Rice, J.R., Beltz, G.E., and Sun, Y., in Topics in Fracture and Fatigue, edited by Argon, A.S. (Springer, Berlin, 1992), pp. 158.Google Scholar
12.Wang, T.C., Philos. Mag. A 74, 4, 983 (1996).CrossRefGoogle Scholar
13.Rice, J.R., Thomson, R., Philos. Mag. 29, 73 (1974).CrossRefGoogle Scholar
14.Xu, G. and Ortiz, M., Int. J. Numer. Methods Eng. 36, 3675 (1993).CrossRefGoogle Scholar
15.Xu, G. and Argon, A.S., Philos. Mag. A 72, 415 (1995).CrossRefGoogle Scholar
16.Xu, G., Argon, A.S., and Ortiz, M., Philos. Mag. A 75, 341 (1997).CrossRefGoogle Scholar
17.Zhou, S.J., Carlsson, A.E., and Thomson, R., Phys. Rev. Lett. 72, 852 (1994).CrossRefGoogle Scholar
18.Orlov, L.G., Sov. Phys. Solid State 9, 1836 (1968).Google Scholar
19.Cleri, F., Yip, S., Wolf, D., and Phillpot, S., Phys. Rev. Lett. 79, 1309 (1997).CrossRefGoogle Scholar
20.Schiøtz, J., Canel, L.M., and Carlsson, A.E., Phys. Rev. B 55, 6211 (1997).CrossRefGoogle Scholar
21.Mullins, M., Int. J. Fract. 24, 189 (1984).CrossRefGoogle Scholar
22.Hoagland, R.G., Daw, M.S., Foiles, S.M., and Baskes, M.I., J. Mater. Res. 5, 313 (1990).CrossRefGoogle Scholar
23.Zhang, Y.W., Wang, T.C., and Tang, Q.H., Scr. Metall. Mater. 33, 267 (1995).CrossRefGoogle Scholar
24.Tang, Q.H., Wang, T.C., and Zhang, Y.W., Acta Mech. Sin. 12, 358 (1996).Google Scholar
25.Daw, M.S. and Baskes, M.I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
26.Johnson, R.A. and Oh, D.J., J. Mater. Res. 4, 1195 (1989).CrossRefGoogle Scholar
27.Landolt-Bornstein, , Numerical Data and Functional Relationships in Science and Technology, New Series, Group III (SpringerVerlag, Berlin, 1979), Vol. 2.Google Scholar
28.Gumbsch, P., J. Mater. Res. 10, 2897 (1995).CrossRefGoogle Scholar
29.Gehlen, P.C. and Kanninen, M.F., in Inelastic Behavior of Solids, edited by Kanninen, M.F., Alder, W.F., Rosenfield, A.R., and Jaffee, R.I. (McGraw-Hill, New York, 1970), p. 587.Google Scholar
30.Kanninen, M.F. and Gehlen, P.C., Int. J. Fract. Mech. 1, 471 (1971).CrossRefGoogle Scholar
31.deCelis, B., Argon, A.S., and Yip, S., J. Appl. Phys. 54, 4664 (1983).CrossRefGoogle Scholar
32.Kitagawa, H., Nakatani, A., and Shibutani, Y., in Proceedings of the IMMM '93, International Seminar Microstructures and Mechanical Properties of New Engineering Materials, edited by Tokada, M., Xu, B., and Senoo, M. (Academic Press, Mie University, Mie, Japan, 1993).Google Scholar
33.Heermann, D.W., Computer Simulation Methods in Theoretic Physics, 2nd ed. (Springer-Verlag, Berlin, 1990).CrossRefGoogle Scholar
34.Nose, S., in Computer Simulation in Materials Science, edited by Meyer, M. and Pontikis, V. (1991), p. 21.CrossRefGoogle Scholar
35.Alber, I., Bassani, J.L., Khantha, M., Vitek, V., and Wang, G.J., Phil. Trans. R. Soc. Lond. A 339, 555 (1992).Google Scholar
36.Tang, Q.H. and Wang, T.C., Acta Mech. Solids Sin. 11, 189 (1998).Google Scholar
37.Tan, H., Yang, W., Acta Mech. Sin. 10, 150 (1994).Google Scholar
38.Hoagland, R.G., Hirth, J.P., and Gehlen, P.C., Philos. Mag. 34, 413 (1976).CrossRefGoogle Scholar
39.Sinclair, J.E., Gehlen, P.C., Hoagland, R.G., and Hirth, J.P., J. Appl. Phys. 49, 3890 (1978).CrossRefGoogle Scholar
40.Finnis, M.W. and Sinclair, J.E., Philos. Mag. A 50, 45 (1984).CrossRefGoogle Scholar
41.Bolf, D.I. and de Klerk, J., J. Appl. Phys. 33, 2311 (1962).CrossRefGoogle Scholar