Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T21:01:11.232Z Has data issue: false hasContentIssue false

Directed block copolymer self-assembly for nanoelectronics fabrication

Published online by Cambridge University Press:  28 January 2011

Daniel J.C. Herr*
Affiliation:
Semiconductor Research Corporation, Research Triangle Park, North Carolina 27709
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This paper provides an overview of directed self-assembly (DSA) options that exhibit potential for enabling extensible high-volume patterning of nanoelectronics devices. It describes the current set of research requirements, which a DSA technology must satisfy to warrant insertion consideration, and summarizes the state-of-the art. The primary focus is on chemical patterning and graphoepitaxial approaches to directing block copolymer (BCP) based assembly. These options exhibit the nearest-term potential, among the emerging DSA technologies, for satisfying projected International Technology Roadmap for Semiconductors (ITRS) patterning requirements. The paper concludes with a selected set of additional challenges, which represent potential barriers to the integration of directed BCP patterning into a nanoelectronics manufacturing line, as well as a few emerging application opportunities for related functional materials. A glossary of acronyms and terms may be found at the end of this manuscript.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brown, K.: When the roadmap doesn’t work. SRC Workshop on Microelectronics at the End of the Roadmap: Infrastructure and Patterning—Cross-Disciplinary Interaction Issues (1999).Google Scholar
2.Dammel, R.: SPIE Presentation (2002).Google Scholar
3.Levinson, H.J.: Principles of Lithography, 2nd ed., Chapter 11, Cost of Ownership SPIE—The International Society for Optical Engineering, Bellingham, WA (2005).CrossRefGoogle Scholar
4.Ross, P.: Moore’s second law. Forbes. 155, 116 (1995).Google Scholar
5.Kanellos, M.: Moore’s law to roll on for another decade. Cnet News website, at http://news.cnet.com/2100-1001-984051.html (2003).Google Scholar
6.Wallow, T., Higgins, C., Brainard, R., Petrillo, K., Montgomery, W., Koay, C-S., . Denbeaux, G., Wood, O., and Wei, Y.: Evaluation of EUV resist materials for use at the 32 nm half-pitch node. Proc. SPIE 6921, 69211F (2008).CrossRefGoogle Scholar
7.Gallatin, G.M.: Resist blur and line edge roughness. Proc. SPIE 5754, 38 (2005).Google Scholar
8.Gallatin, G.M., Naulleau, P., Niakoula, D., Brainard, R., Hassanein, E., Matyi, R., Thackeray, J., Spear, K., and Dean, K.: Resolution, LER, and sensitivity limitations of photoresists. Proc. SPIE 6921, 69211E (2008).CrossRefGoogle Scholar
9.Van Steenwinckel, D., Gronheid, R., Lammers, J.H., Meyers, A.M., Van Roey, F., and Willems, P.: A novel method for characterizing resist performance. Proc. SPIE 6519, 65190V (2007).CrossRefGoogle Scholar
10.Bristol, R.L.: The tri-lateral challenge of resolution, photospeed, and LER: Scaling below 50 nm? Proc. SPIE 6519, 65190W (2007).CrossRefGoogle Scholar
11.Lithography Chapter, Figure LITH2. Schematic process flows for double exposure, double patterning, and spacer double patterning, International Technology Roadmap for Semiconductors, 2007, pp. 1–34. International SEMATECH, Austin, TX, 2007.Google Scholar
12.Lithography Chapter, Table LITH2b. Lithography difficult challenges, International Technology Roadmap for Semiconductors, 2009, pp. 1–17. International SEMATECH, Austin, TX, 2009Google Scholar
13.Ajayan, P. and Iljima, S.: Smallest carbon nanotube. Nature 358(6381), 23 (1992).CrossRefGoogle Scholar
14.Gracias, D.H., Tien, J., Breen, T.L., Hsu, C., and Whitesides, G.M.: Forming electrical networks in three dimensions by self-assembly. Science 289(5482), 1170 (2000).CrossRefGoogle ScholarPubMed
15.DNA: The Secret of Life, video, UNC-Chapel Hill Morehead Center, Chapel Hill, NC (2003).Google Scholar
16.Xiao, R., Cho, S., Liu, R., and Lee, S.: Controlled electrochemical synthesis of conductive polymer nanotube structures. J. Am. Chem. Soc. 129(14), 4483 (2007).CrossRefGoogle ScholarPubMed
17.Emerging Research Material (ERM) Chapter, Directed Self-Assembly section, 2009 International Technology Roadmap for Semiconductors (Hsinchu, Taiwan, 2009), p. 24.Google Scholar
18.Kim, H., Park, S., and Hinsberg, W.: Block copolymer-based nanostructures: Materials, processes, and applications to electronics. Chem. Rev. 110(1), 146 (2009).CrossRefGoogle Scholar
19.Segalman, R., Yokoyama, H., and Kramer, E.: Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13(15), 1152 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
20.Schaffer, E., Thurn-Albrecht, T., Russell, T., and Steiner, U.: Electrically induced structure formation and pattern transfer. Nature 403(6772), 874 (2000).CrossRefGoogle ScholarPubMed
21.Mayer, T.S., Li, M., Kim, J., Hu, W., Morrow, T., Nimmatoori, P., Y-Cao, Y., Redwing, J.M., Mallouk, T.E., and Keating, C.D.: Enabling the convergence of chemistry and biology with chip-scale electronics by directed nanowire assembly. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2009).Google Scholar
22.Cavin, R., Zhirnov, V., Herr, D., Avila, A., and Hutchby, J.: Research directions and challenges in nanoelectronics. J. Nanopart. Res. 8(6), 841 (2006).CrossRefGoogle Scholar
23.Philip, D. and Stoddart, J.: Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 35(11), 1155 (1996).Google Scholar
24.O’Brien, J.L., Schofield, S.R., Simmons, M.Y., Clark, R., Dzurak, A., Curson, N., Kane, B., McAlpine, N., Hawley, M., and Brown, G.: Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64, 16401–1 (2001).CrossRefGoogle Scholar
25.Schofield, S., Curson, N., Simmons, M., Ruess, F., Hallam, T., Oberbeck, L., and Clark, R.: Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104–1 (2003).CrossRefGoogle ScholarPubMed
26.Ruess, F.J., Oberbeck, L., Simmons, M.Y., Goh, K., Hamilton, A., Hallam, T., Schofield, S., Curson, N., and Clark, R.: Toward atomic-scale device fabrication in silicon using scanning-probe microscopy. Nano Lett. 4(10), 1969 (2004).CrossRefGoogle Scholar
27.Ruess, F.J., Pok, W., Reusch, T.C.G., Butcher, M., Goh, K., Oberbeck, L., Scappucci, G., Hamilton, A., and Simmons, M.: Realization of atomically-controlled dopant devices in silicon. Small 3(4), 563 (2007).CrossRefGoogle ScholarPubMed
28.Firouzi, A., Kumar, D., Bull, L., Besier, T., Sieger, P., Huo, Q., Walker, S., Zasadzinski, J., Glinka, C., and Nicol, J.: Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267(5201), 1138 (1995).CrossRefGoogle ScholarPubMed
29.Flynn, C., Lee, S., Peelle, B., and Belcher, A.: Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 51(19), 5867 (2003).CrossRefGoogle Scholar
30.Kim, H., Zin, W., and Lee, M.: Anion-directed self-assembly of coordination polymer into tunable secondary structure. J. Am. Chem. Soc. 126(22), 7009 (2004).CrossRefGoogle ScholarPubMed
31.Welander, A.M., Stuen, K.O., Kang, H., Liu, C.C., Solak, H.H., de Pablo, J.J., and Nealey, P.F.: Directed assembly of block copolymer resist materials: Manufacturability. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).Google Scholar
32.Lehn, J.: Perspectives in supramolecular chemistry—From molecular recognition towards molecular information-processing and self-organization. Angew. Chem. Int. Ed. Engl. 29(11), 1304 (1990).CrossRefGoogle Scholar
33.Lehn, J. Mascal, M. Decian, A., and Fischer, J.: Molecular recognition directed self-assembly of ordered supramolecular strands by cocrystallization of complementary molecular-components. J. Chem. Soc. Chem. Commun. 6, 479 (1990).CrossRefGoogle Scholar
34.Lehn, J., Mascal, M., Decian, A., and Fischer, J.: Molecular ribbons from molecular recognition directed self-assembly of self-complementary molecular-components. J. Chem. Soc.—Perkin Trans. 2(4), 461 (1992).CrossRefGoogle Scholar
35.Gulikkrzywicki, T., Fouquey, C., and Lehn, J.: Electron-microscopic study of supramolecular liquid-crystalline polymers formed by molecular-recognition directed self-assembly from complementary chiral components. Proc. Natl. Acad. Sci. USA 90(1), 163 (1993).CrossRefGoogle ScholarPubMed
36.Fujita, M.: Metal-directed self-assembly of two- and three-dimensional synthetic receptors. Chem. Soc. Rev. 27(6), 417 (1998).CrossRefGoogle Scholar
37.Krische, M. and Lehn, J.: The utilization of persistent H-bonding motifs in the self-assembly of supramolecular architectures. Molecular Self Assembly Struct. Bond. 96, 3 (2000).Google Scholar
38.Albrecht, M.: From molecular diversity to template-directed self-assembly – new trends in metallo-supramolecular chemistry. J. Inclusion Phenom. Macrocyclic Chem. 36(2), 127 (2000).CrossRefGoogle Scholar
39.Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y., and Mashiko, S.: Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413(6856), 619 (2001).CrossRefGoogle ScholarPubMed
40.Noveron, J.C., Lah, M.S., Del Sesto, R.E., Arif, A., Miller, J., and Stang, P.: Engineering the structure and magnetic properties of crystalline solids via the metal-directed self-assembly of a versatile molecular building unit. J. Am. Chem. Soc. 124(23), 6613 (2002).CrossRefGoogle ScholarPubMed
41.Ikkala, O. and Brinke, G.: Functional materials based on self-assembly of polymeric supramolecules. Science 295(5564), 2407 (2002).CrossRefGoogle ScholarPubMed
42.Oh, M., Carpenter, G., and Sweigart, D.: Supramolecular metal-organometallic coordination networks based on quinonoid Pi-complexes. Acc. Chem. Res. 37(1), 1 (2004).CrossRefGoogle ScholarPubMed
43.Stoykovich, M., Muller, M., Kim, S., Splak, H., Edwards, E., de Pablo, J., and Nealey, P.: Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308(5727), 1442 (2005).CrossRefGoogle ScholarPubMed
44.Smith, P., Nordquist, C., Jackson, T., Mayer, T., Martin, B., Mbindyo, J., and Mallouk, T.: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77(9), 1399 (2000).CrossRefGoogle Scholar
45.Jacobs, H., Campbell, S., and Steward, M.: Approaching nanoxerography: The use of electrostatic forces to position nanoparticles with 100 nm scale resolution. Adv. Mater. 14(21), 1553 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
46.Winkleman, A., Gates, G., McCarty, L., and Whitesides, G.: Directed self-assembly of spherical particles on patterned electrodes by an applied electric field. Adv. Mater. 17(12), 1507 (2005).CrossRefGoogle Scholar
47.Morrow, T., Li, M., Kim, J., Mayer, T., and Keating, C.: Programmed assembly of DNA-coated nanowire devices. Appl. Phys. Lett. 323(5912), 352 (2009).Google ScholarPubMed
48.Green, P., Russell, T., Jerome, R., and Granville, M.: Diffusion of homopolymers into nonequilibrium block copolymer structures. 1. Molecular weight dependence. Macromolecules 21(11), 3266 (1988).CrossRefGoogle Scholar
49.Creton, C., Kramer, E., and Hadziioannou, G.: Critical molecular-weight for block copolymer reinforcement of interfaces in a 2-phase polymer blend. Macromolecules 24(8), 1846 (1991).CrossRefGoogle Scholar
50.Green, P., Christensen, T., and Russell, T.: Ordering at diblock-copolymer surfaces. Macromolecules 24(1), 252 (1991).CrossRefGoogle Scholar
51.Creton, C., Kramer, E., Hui, C., and Brown, H.: Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25(12), 3075 (1992).CrossRefGoogle Scholar
52.Morkved, T., Lu, M., Urbas, A., Ehrichs, E., Jaeger, H., Mansky, P., and Russell, T.: Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273(5277), 931 (1996).CrossRefGoogle ScholarPubMed
53.Kellog, G., Walton, D., Mayes, A., Gallagher, P., and Satija, S.: Observed surface energy effects in confined diblock copolymers. Phys. Rev. Lett. 76(14), 2503 (1996).CrossRefGoogle Scholar
54.Husseman, M., Malmstrom, E., McNamara, M., Mate, M., Mecerreyes, D., Benoit, D., Hedrick, J., Mansky, P., Huang, E., Russell, T., and Hawker, C.: Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules 32(5), 1424 (1999).CrossRefGoogle Scholar
55.Thurn-Albrecht, T., Steiner, R., DeRouchey, J., Stafford, C., Huang, E., Bal, M., Tuominen, M., Hawker, C., and Russell, T.: Nanoscopic templates from oriented block copolymer films. Adv. Mater. 12(11), 787 (2000).3.0.CO;2-1>CrossRefGoogle Scholar
56.Guarini, K., Black, C., and Yeuing, S.: Optimization of diblock copolymer thin film self-assembly. Adv. Mater. 14(18), 1290 (2002).3.0.CO;2-N>CrossRefGoogle Scholar
57.Alberius, P., Frindell, K., Hayard, R., Kramer, E., Stucky, G., and Chmelka, B.: General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 14(8), 3284 (2002).CrossRefGoogle Scholar
58.Clark, T., Ferrigno, R., Tien, J., Paul, K., and Whitesides, G.: Template-directed self-assembly of 10-μm-sized hexagonal plates. J. Am. Chem. Soc. 124(19), 5419 (2002).CrossRefGoogle Scholar
59.Black, C.: Polymer self-assembly as a novel extension to optical lithography. ACS Nano. 1(3), 147 (2007).CrossRefGoogle ScholarPubMed
60.Detcheverry, F., Kang, H., Daoulas, K., Muller, M., Nealey, P., and De Pablo, J.: Monte Carlo simulations of a coarse grain model for block copolymers and nanocomposites. Macromolecules 41(13), 4989 (2008).CrossRefGoogle Scholar
61.Daoulas, K., Muller, M., Stoykovich, M., Kang, H., de Pablo, J., and Nealey, P.: Directed copolymer assembly on chemical substrate patterns: A phenomenological and single-chain-in-mean-field simulations study of the influence of roughness in the substrate pattern. Langmuir 24(4), 1284 (2008).CrossRefGoogle ScholarPubMed
62.Bosworth, J., Paik, M., Ruiz, R., Schwartz, E., Huang, J., Ko, A., Smilgies, D., Black, C., and Ober, C.: Control of self-assembly of lithographically patternable block copolymer films. ACS Nano. 2(7), 1396 (2008).CrossRefGoogle ScholarPubMed
63.Bosworth, J., Black, C., and Ober, C.: Selective area control of self-assembled pattern architecture using a lithographically patternable block copolymer. ACS Nano. 3(7), 1761 (2009).CrossRefGoogle ScholarPubMed
64.Braun, C., Richter, T., Schacher, F., Muller, A., Crossland, E., and Ludwigs, S.: Block copolymer micellar nanoreactors for the directed synthesis of ZnO nanoparticles. Macromol. Rapid Commun. 31(8), 729 (2010).CrossRefGoogle ScholarPubMed
65.Sohn, K., Kojio, K., Berry, B., Karims, A., Coffin, R., Bazan, G., Kramer, E., Sprung, M., and Wang, J.: Surface effects on the thin film morphology of block copolymers with bulk order-order transitions. Macromolecules 43(7), 3406 (2010).CrossRefGoogle Scholar
66.Hu, J., Odom, T., and Lieber, C.: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435 (1999).CrossRefGoogle Scholar
67.Kong, J., Franklin, N., Zhou, C., Chapline, M., Peng, S., Cho, K., and Dai, H.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622 (2000).CrossRefGoogle ScholarPubMed
68.Vander Wal, R.: Substrate–support interactions in metal-catalyzed carbon nanofiber growth. Carbon 39(15), 2277 (2001).CrossRefGoogle Scholar
69.Liu, X., Lee, C., Zhou, C., and Han, J.: Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79(20), 3329 (2001).CrossRefGoogle Scholar
70.Javey, A., Wang, Q., Ural, A., Li, Y., and Dai, H.: Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2(9), 929 (2002).CrossRefGoogle Scholar
71.Melosh, N., Boukai, A., Diana, F., Gerardot, G., Badolato, A., Petroff, P., and Heath, J.: Ultrahigh-density nanowirelattices and circuits. Science 300(5616), 112 (2003).CrossRefGoogle ScholarPubMed
72.Hata, K., Futaba, D., Mizuno, K., Namai, T., Yumura, M., and Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362 (2004).CrossRefGoogle ScholarPubMed
73.Rothemund, P., Ekani-Nkodo, X., Papdakis, N., Kumar, A., Gygenson, D., and Winfree, E.: Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126(50), 16344 (2004).CrossRefGoogle ScholarPubMed
74.See, C. and Harris, A.: A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res. 46(4), 997 (2007).CrossRefGoogle Scholar
75.Hochbaum, A., Chen, R., Delgado, R., Liang, W., Garnett, E., Najarian, M., Majumdar, A., and Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163 (2008).CrossRefGoogle ScholarPubMed
76.Joselevich, E., Dai, H., Liu, J., Hata, K., and Windle, A.: Carbon nanotube synthesis and organization. Carbon Nanotubes. Topics Appl. Phys. 111, 101 (2008).Google Scholar
77.Heath, J.: Superlattice nanowire pattern transfer (SNAP). Acc. Chem. Res. 41(12), 1609 (2008).CrossRefGoogle ScholarPubMed
78.Wang, D., Sheriff, B., McAlpine, M., and Heath, J.: Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Research 1(1), 9 (2008).CrossRefGoogle Scholar
79.Kumar, A. and Zhou, C.: The race to replace tin-doped indium oxide: Which material will win? ACS Nano. 4(1), 11 (2010).CrossRefGoogle ScholarPubMed
80.Maune, H., Han, S., Barish, R., Bockrath, M., Goddard, W., Rothemund, P., and Winfree, E.: Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5(1), 61 (2010).CrossRefGoogle ScholarPubMed
81.Tomalia, D., Naylor, A., and Goddard, W.: Starburst dendrimers—Molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angelwandte Chemie, Int. ed.in English. 29(2) 138 (1990).CrossRefGoogle Scholar
82.Dai, H.: Carbon nanotubes: Opportunities and challenges. Surf. Sci. 500(13) 218 (2002).CrossRefGoogle Scholar
83.Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., and Firsov, A.: Electric field effect in atomically thin carbon films. Science 306(5296), 6666 (2004).CrossRefGoogle ScholarPubMed
84.Geim, A. and Novoselev, K.: The rise of graphene. Nat. Mater. 6(3), 183 (2007).CrossRefGoogle ScholarPubMed
85.Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229 (2008).CrossRefGoogle ScholarPubMed
86.Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., and Dai, H.: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 20 (2008).CrossRefGoogle ScholarPubMed
87.Wang, D., Kou, R., Choi, D., Yang, Z., Nie, Z., Li, J., Saraf, L., Hu, D., Zhang, J., Graff, G., Liu, J., Pope, M., and Aksay, I.: Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano. 4(3), 1587 (2010).CrossRefGoogle ScholarPubMed
88.Ouyang, Y., Dai, H., and Guo, J.: Projected performance advantage of multilayer graphene nanoribbons as a transistor channel. Nano Research 3(1), 8 (2010).CrossRefGoogle Scholar
89.Hawker, C. and Frechet, J.: Unusual macromolecular architectures: The convergent growth approach to dendritic polyesters and novel block copolymers. J. Am. Chem. Soc. 114(22), 8405 (1992).CrossRefGoogle Scholar
90.Frechet, J.: Functional polymers and dendrimers: Reactivity, molecular architecture, and interfacial energy. Science 263(5154), 1710 (1994).CrossRefGoogle ScholarPubMed
91.Zeng, F. and Zimmerman, S.: Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chem. Rev. 97(5), 1681 (1997).CrossRefGoogle ScholarPubMed
92.Tully, D., Wilder, K., Frechet, J., Trimble, A., and Quate, C.: Dendrimer-based self-assembled monolayers as resists for scanning probe lithography. Adv. Mater. 11(4), 314 (1999).3.0.CO;2-E>CrossRefGoogle Scholar
93.Tour, J.: Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures. Chem. Rev. 96(1), 537 (2001).CrossRefGoogle Scholar
94.Grayson, S. and Frechet, J.: Convergent dendrons and dendrimers: From synthesis to applications. Chem. Rev. 101(12), 3819 (2001).CrossRefGoogle ScholarPubMed
95.Serin, J., Brousmiche, D., and Frechet, J.: Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem. Commun. (Camb.). 22, 2605 (2002).CrossRefGoogle Scholar
96.Bosman, A., Vestberg, R., Heumann, A., Frechet, J., and Hawker, C.: A modular approach toward functionalized three-dimensional macromolecules: From synthetic concepts to practical applications. J. Am. Chem. Soc. 125(3), 715 (2003).CrossRefGoogle ScholarPubMed
97.Muthukumar, M., Ober, C., and Thomas, E.: Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277(5330), 1225 (1997).CrossRefGoogle Scholar
98.Park, M., Harrison, C., Chaikin, P., Register, R., and Adamson, D.: Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276(5317), 1401 (1997) (Print).CrossRefGoogle Scholar
99.Rockford, L., Mansky, P., and Russell, T.: Polymers on nanoperiodic, heterogeneous surfaces. Phys. Rev. Lett. 82(12), 2602 (1999).CrossRefGoogle Scholar
100.Heath, J. and Ratner, M.: Molecular electronics. Phys. Today 56(5), 43 (2003).CrossRefGoogle Scholar
101.De Silva, A., Prasanna, A., and McClenaghan, N.: Molecular-scale logic gates. Chemistry 10(3), 574 (2004).CrossRefGoogle ScholarPubMed
102.Rothemund, P., Papdakis, N., and Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041 (2004).CrossRefGoogle ScholarPubMed
103.Lin, C., Liu, Y., Rinker, S., and Yan, H.: DNA tile based self-assembly: Building complex nanoarchitectures. ChemPhysChem 7(8), 1641 (2006).CrossRefGoogle ScholarPubMed
104.Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297 (2006).CrossRefGoogle ScholarPubMed
105.Kershner, R., Bozano, L., Micheel, C., Hung, A., Fornof, A., Cha, J., Rettner, C., Bersani, M., Frommer, J., Rothemund, P., and Wallraff, G.: Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4(9), 557 (2009).CrossRefGoogle ScholarPubMed
106.Cha, J. and Stucky, G., Morse, D., and Deming, T.: Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403(6767), 289 (2000).CrossRefGoogle ScholarPubMed
107.Ulijn, R. and Smith, A.: Designing peptide-based nanomaterials. Chem. Soc. Rev. 37(4), 664 (2008).CrossRefGoogle ScholarPubMed
108.Johnson, E., Adams, D., and Cameron, P.: Directed self-assembly of dipeptides to form ultrathin hydrogel membranes. J. Am. Chem. Soc. 132(14), 5130 (2010).CrossRefGoogle ScholarPubMed
109.Allen, P., Downer, J., Hastings, G., Melville, H., Molyneux, P., and Urwin, J.: New methods of preparing block copolymers 910–912. Nature 177(4516), 903 (1956).CrossRefGoogle Scholar
110.Urwin, J.R.: The preparation of block copolymer of styrene and methyl methacrylate. J. Polym. Sci., Polym. Phys. Ed. 27(115), 580 (1958).Google Scholar
111.Dunn, A. and Melville, H.: Synthesis of “block” copolymers. Nature 169(4304), 699 (1952).CrossRefGoogle Scholar
112.Orr, R.J. and Williams, H.L.: The synthesis and identification of block polymers of butadiene and styrene. J. Am. Chem. Soc. 79(12) 3137 (1957).CrossRefGoogle Scholar
113.Galli, G., Chiellini, E., and Ober, C.: Polyesters of glycolethers—Syntheses and liquid-crystalline property. Chim. Ind. 63(11), 777 (1981).Google Scholar
114.Ober, C., Jin, J., and Lenz, R.: Liquid-crystal polymers with flexible spacers in the main chain. Adv. Polym. Sci. 59, 103 (1994).CrossRefGoogle Scholar
115.Balcerzyk, E., Pstrocki, H., and Wlodarski, G.: Morphology of polymer of ethylene sulfide and its block copolymer with styrene. J. Appl. Polym. Sci. 11(7), 1179 (1967).CrossRefGoogle Scholar
116.Galli, G., Benedetti, E., Chiellini, E., Ober, C., and Lenz, R.: Phase transitions in alkylene glycol terephthalate copolyesters containing mesogenic P-oxybenzoate units. Polym. Bull. 5(910), 497 (1981).Google Scholar
117.Galli, G., Chiellini, E., Ober, C., and Lenz, R.: Liquid-crystalline polymers & structurally-ordered thermotropic polyesters of glycolethers. Makromolekulare Chemie—Macromolecular Chemistry and Physics. 6183(11), 2693 (1982).CrossRefGoogle Scholar
118.Ohta, T. and Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621 (1986).CrossRefGoogle Scholar
119.Bates, F.S. and Fredrickson, G.H.: Block copolymer thermodynamics—Theory and experiment. Annu. Rev. Phys. Chem. 41, 525 (1990).CrossRefGoogle ScholarPubMed
120.Matsen, M. and Bates, F.: Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29(4), 1091 (1996).CrossRefGoogle Scholar
121.Husseman, M., Malmstrom, E., McNamara, M., Mate, M., Mecerreyes, D., Benoit, D., Hedrick, J., Mansky, P., Russell, T., and Hawker, C.: Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules 32(5), 1424 (1999).CrossRefGoogle Scholar
122.Kim, S., Solak, H., Stoykovich, M., Ferrier, N., de Pablo, J., and Nealey, P.: Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411 (2003).CrossRefGoogle ScholarPubMed
123.Herr, D.: The extensibility of optical patterning via directed self-assembly of nano-engineered imaging materials. NaFuture Fab International 18, 93 (2005).Google Scholar
124.Cheng, J. and Ross, C.: Directed self-assembly of block copolymers. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2005).Google Scholar
125.Ross, C.A., Chuang, V., and Jung, Y.S.: Templated self-assembly of block copolymers for nanolithographic device fabrication. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2006).Google Scholar
126.Zhao, B. and Brittain, W.: Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 25(5), 677 (2000).CrossRefGoogle Scholar
127.Baum, M. and Brittain, W.: Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique. Macromolecules 35(3), 610 (2002).CrossRefGoogle Scholar
128.Zhao, B. and Brittain, W.: Synthesis, characterization, and properties of tethered polystyrene–b-polyacrylate brushes on flat silicate substrates. Macromolecules 33(23), 8813 (2000).CrossRefGoogle Scholar
129.Ulrich, R., Du Chesne, A., Templin, M., and Wiesner, U.: Nano-objects with controlled shape, size, and composition from block copolymer mesophases. Adv. Mater. 11(2), 141 (1999).3.0.CO;2-R>CrossRefGoogle Scholar
130.Amalvy, J., Percy, M., Armes, S., and Wiese, H.: Synthesis and characterization of novel film-forming vinyl polymer/silica colloidal nanocomposites. Langmuir 17(16), 4770 (2001).CrossRefGoogle Scholar
131.Fujimoto, T., Zhang, H., Kazama, T., Isono, Y., Hasegawa, H., and Hashimoto, T.: Preparation and characterization of novel star-shaped copolymers having 3 different branches. Polymer (Guildf.). 33(10), 2208 (1992).CrossRefGoogle Scholar
132.Husseman, M., Malmstrom, E., McNamara, M., Mate, M., Mecerreyes, D., Genoit, D., Hedrick, J., Mansky, P., Huang, E., Russell, T., and Hawker, C.: Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules 32(5), 1424 (1999).CrossRefGoogle Scholar
133.Leibler, L. and Pincus, P.: Ordering transition of copolymer micelles. Macromolecules 17(12), 2922 (1984).CrossRefGoogle Scholar
134.Tanaka, H., Hasegawa, H., and Hashimoto, T.: Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low-molecular-weight homopolymers. Macromolecules 24(1), 240 (1991).CrossRefGoogle Scholar
135.Sakurai, S., Kawada, H., Hashimoto, T., and Fetters, L.: Thermoreversible morphology transition between spherical and cylindrical microdomains of block-copolymers. Macromolecules 26(21), 5796 (1993).CrossRefGoogle Scholar
136.Pakula, T., Saijo, K., Kawai, H., and Hashimoto, T.: Deformation-behavior of styrene butadiene styrene triblock copolymer with cylindrical morphology. Macromolecules 18(6), 1294 (1985).CrossRefGoogle Scholar
137.Dai, K. and Kramer, E.: Determining the temperature-dependent Flory Interaction parameter for strong immiscible polymers from block-copolymer segregation measurements. Polymer (Guildf.). 35(26), 157 (1994).CrossRefGoogle Scholar
138.Alberius, P., Frindell, K., Hayward, R., Kramer, E., Stucky, G., and Chmelka, B.: General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 14(8), 3284 (2002).CrossRefGoogle Scholar
139.Shull, K., Kramer, E., Bates, F., and Rosedale, J.: Self-diffusion of symmetrical diblock copolymer melts near the ordering transition. Macromolecules 24(6), 1383 (1991).CrossRefGoogle Scholar
140.Chen, C. and White, J.: Compatibilizing agents in polymer blends—Interfacial-tension, phase morphology, and mechanical-properties. Polym. Eng. Sci. 33(14), 923 (1993).CrossRefGoogle Scholar
141.Zhu, L., Cheng, S., Calhoun, B., Ge, Q., Quirk, R., Thomas, E., Hsiao, B., Yeh, F., and Lotz, B.: Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline-amorphous diblock copolymer. J. Am. Chem. Soc. 122(25), 5957 (2000).CrossRefGoogle Scholar
142.Zhu, L., Cheng, S., Calhoun, B., Ge, Q., Quirk, R., Thomas, E., Lotz, B., Wittmann, J., Hsiao, B., Yeh, F., and Liu, L.: Phase structures and morphologies determined by self-organization, vitrification, and crystallization: Confined crystallization in an ordered lamellar phase of PEO–b-PS diblock copolymer. Polymer (Guildf.). 42(13), 5829 (2001).CrossRefGoogle Scholar
143.Park, C., Yoon, J., and Thomas, E.: Enabling nanotechnology with self-assembled block copolymer patterns. Polymer (Guildf.). 44(22), 6725 (2003).CrossRefGoogle Scholar
144.Park, C., Yoon, J., and Thomas, E.: Erratum to: Enabling nanotechnology with self-assembled block copolymer patterns. Polymer (Guildf.). 44(25), 7779 (2003).CrossRefGoogle Scholar
145.Muthukumar, M., Ober, C., and Thomas, E.: Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277(5330), 1225 (1997).CrossRefGoogle Scholar
146.Hajduk, D., Harper, P., Gruner, S., Honeker, C., Kim, G., Thomas, E., and Fetters, L.: The Gyroid—A new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules 27(15), 4063 (1994).CrossRefGoogle Scholar
147.Thomas, E., Anderson, D., Henkee, C., and Hoffman, D.: Periodic area-minimizing surfaces in block copolymers. Nature 334(6183), 598 (1988).CrossRefGoogle Scholar
148.Winey, K., Thomas, E., and Fetters, L.: Isothermal morphology diagrams for binary blends of diblock copolymer and homopolymer. Macromolecules 25(10), 2645 (1992).CrossRefGoogle Scholar
149.Hashimoto, T., Tanaka, H., and Hasegawa, H.: Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of Molecular-weights of homopolymers. Macromolecules 23(20), 4378 (1990).CrossRefGoogle Scholar
150.Hashimoto, T., Yamasaki, K., Koizumi, S., and Hasegawa, H.: Ordered structure in blends of block copolymers. 1. Miscibility criterion for lamellar block copolymers. Macromolecules 26(11), 2895 (1993).CrossRefGoogle Scholar
151.Kim, E., Kramer, E., Wu, W., and Garrett, P.: Diffusion in blends of poly(methyl methacrylate) and poly (styrene-co-acrylonitrile). Polymer (Guildf.). 35(26), 5705 (1994).CrossRefGoogle Scholar
152.Creton, C., Kramer, E., Hui, C., and Brown, H.: Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25(12), 3075 (1992).CrossRefGoogle Scholar
153.Mansky, P., Liu, Y., Huang, E., Russell, T., and Hawker, C.: Controlling polymer-surface interactions with random copolymer brushes. Science 275(5305), 1458 (1997).CrossRefGoogle Scholar
154.Mansky, P., Chaikin, P., and Thomas, E.: Monolayer films of diblock copolymer microdomains for nanolithographic applications. J. Mater. Sci. 30(8), 1987 (1995).CrossRefGoogle Scholar
155.Mansky, P., Harrison, C., Chaikin, P., Register, R., and Yao, N.: Nanolithographic templates from diblock copolymer thin films. Appl. Phys. Lett. 68(18), 2586 (1996).CrossRefGoogle Scholar
156.Morkved, T., Lu, M., Urbas, A., Ehrichs, E., Jaeger, H., Mansky, P., and Russell, T.: Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273(5277), 931 (1996).CrossRefGoogle ScholarPubMed
157.Rockford, L., Liu, Y., Mansky, P., and Russell, T.: Polymers on nanoperiodic, heterogeneous surfaces. Phys. Rev. Lett. 83(12), 2602 (1999).CrossRefGoogle Scholar
158.Mansky, P., Russell, T., Hawker, C., Pitsikalis, M., and Mays, J.: Ordered diblock copolymer films on random copolymer brushes. Macromolecules 30(22), 6810 (1997).CrossRefGoogle Scholar
159.Park, M., Harrison, C., Chaikin, P., Register, R., and Adamson, D.: Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276(5317), 1401 (1997).CrossRefGoogle Scholar
159a.Herr, Daniel J.C.: The Extensibility of optical patterning via Directed self-Assembly of Nano-Engineeried Imaging Materials, Future Fab International , Issue 18, pp. 93–96 (Reproduced by permission from Futur Fab International) (January 2005).Google Scholar
160.Darling, S.: Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32(10), 1152 (2007).CrossRefGoogle Scholar
161.SRC-SEMATECH joint DSA project.Google Scholar
162.Stoykovich, M., Daoulas, K., Muller, M., Kang, H., De Pablo, J., and Nealey, P.: Remediation of line edge roughness in chemical nanopatterns by the directed assembly of overlying block copolymer films. Macromolecules 43(5), 2334 (2010).CrossRefGoogle Scholar
163.Tables LITH 3. Lithography Technology Requirements and LITH4a. Resist Requirements [2015, except where otherwise noted], International Technology Roadmap for Semiconductors, 2009. International SEMATECH, Austin, TX, 2009.Google Scholar
164.Craig, G.S.W. and Nealey, P.F.: Exploring the manufacturability of using block copolymers as resist materials in conjunction with advanced lithographic tools. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).Google Scholar
165.Reckoned from Paul Nealey, Insertion of self-assembling block copolymer materials into the lithographic process, SRC TECHCON 2007 Session on Novel Nano Assembly, Proceedings, File: E002785_pnealey.pdf (2007).Google Scholar
166.Farrell, R., Fitzgerald, T., Borah, D., Holmes, J., and Morris, M.: Chemical interactions and their role in the microphase separation of block copolymer thin films. Int. J. Mol. Sci. 10(9), 3671 (2009).CrossRefGoogle ScholarPubMed
167.Hammond, M., Cochran, E., Fredrickson, G., and Kramer, E.: Temperature dependence of order, disorder, and defects in laterally confined diblock copolymer cylinder monolayers. Macromolecules 38(15), 6575 (2005).CrossRefGoogle Scholar
168.Bosse, A., Sides, S., Katsov, K., Garcia-Cervera, C., and Fredrickson, G.: Defects and their removal in block copolymer thin film simulations. J. Polym. Sci., B, Polym. Phys. 44(18), 2495 (2006).CrossRefGoogle Scholar
169.Nealey, P., Bowling, A., Capodieci, L., Eib, N., Herr, D.J.C., Robertson, F., and Zhirnov, V.: The Use of Directed Self-Assembly to Extend CMOS and Post CMOS Technologies, 2005 SRC ETAB Summer Study, Vail, CO [June 27, 2005] Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers.Google Scholar
170.Edwards, E., Muller, M., Stoykovich, M., Solak, H., de Pablo, J., and Nealey, P.: Dimensions and shapes of block copolymer domains assembled on lithographically defined chemically patterned substrates. Macromolecules 40(1), 90 (2007).CrossRefGoogle Scholar
171.Stoykovich, M., Kang, H., de Pablo, J., and Nealey, P.: Directed copolymer assembly on chemical substrate patterns: A phenomenological and single-chain-in-mean-field simulations study of the influence of roughness in the substrate pattern. Langmuir 24(4), 1284 (2008).Google Scholar
172.Liu, G., Thomas, C., Craig, G., and Nealey, P.: Integration of density multiplication in the formation of device-oriented features. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers, (2010).Google Scholar
173.Liu, C-C., Han, E., Ji, S., Detcheverry, F., de Pabo, J., Gopalan, P., and Nealey, P.: Density multiplication of lamellae-forming block copolymer on chemical substrates with weakly preferential background. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2009).Google Scholar
174.Liu, C., Chang, T., Raub, A., Yoshida, H., Wallow, T., Han, E., Kang, H., Gopalan, P., Brueck, S., Ma, Z., and Nealey, P.: The fabrication and characterization of nanowire FETs by block copolymer multiple patterning. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers, (2010).Google Scholar
175.Edwards, E.: Control over the shape of nanostructures in block copolymer lithography and implications for nonmanufacturing. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2005).Google Scholar
176.Event, S.R.C.: E002515. SRC-NNI-CWG2 Semiconductor Research Corporation—National Nanotechnology Initiative Consultative Working Group 2 on Novel Materials and Assembly Methods for Extending Charge Based Technologies, Workshop on Directed Self-Assembling Materials for Nanopatterning, University of Wisconsin at Madison, June 16, 2005, PN review (2006).Google Scholar
177.Zhao, D., Feng, J., Huo, Q., and Melosh, N.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279(5350), 548 (1998).CrossRefGoogle ScholarPubMed
178.Yang, P., Zhoa, D., Margolese, D., Chmelka, B., and Stucky, G.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396(6707), 152 (1998).CrossRefGoogle Scholar
179.Pai, R., Humayun, R., Schulberg, M., Sengupta, A., Sun, J., and Watkins, J.: Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303(5657), 507 (2004).CrossRefGoogle ScholarPubMed
180.Wright, M., Watkins, J., Russell, T., Desu, S., Tuominen, M., Bhatia, S., Rotello, V., Carter, K., Singh, A., Mehta, M., Fountain, J., and Capistran, J.: Center for Hierarchical Manufacturing. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2006).Google Scholar
181.Pai, R. and Watkins, J.: Synthesis of mesoporous organosilicate films in supercritical carbon dioxide. Adv. Mater. 18(2), 241 (2006).CrossRefGoogle Scholar
182.Tirumala, V., Pai, R., Agarwal, S., Testa, J., Bhatnagar, G., Romang, A., Chandler, C., Gorman, B., Jones, R., Lin, E., and Watkins, J.: Mesoporous silica films with long-range order prepared from strongly segregated block copolymer/homopolymer blend templates. Chem. Mater. 19(24), 5868 (2007).CrossRefGoogle Scholar
183.Nagarajan, S., Russell, T., and Watkins, J.: Dual-tone patterned mesoporous silicate films template from chemically-amplified block copolymers. Adv. Funct. Mater. 19(17), 2728 (2009).CrossRefGoogle Scholar
184.Stoykovich, M.P., Kang, H., Ch. Daoulas, K., Liu, G., Liu, C-C., de Pablo, J.J., Muller, M., and Nealey, P.F.: Directed self-assembly of block copolymers for nanolithography: Fabrication of isolated features and essential integrated circuit geometries. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).Google Scholar
185.Nealey, P.: Control materials and processes for sub-32 nm lithography. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2006).Google Scholar
186.Park, S., Kim, B., Hawker, C., Kramer, E., Bang, J., and Ha, J.: Controlled ordering of block copolymer thin films by the addition of hydrophilic nanoparticles. Macromolecules 40, 8119 (2007).CrossRefGoogle Scholar
186a.Stoykovich, M., Kang, H., Daoulas, K., Liu, G., Liu, C., de Pablo, J., Muller, M., and Nealey, P.: Directed Self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries. ACS Nano 1. 3, 168 (2007).CrossRefGoogle Scholar
187.Ross, C.: Templated self-assembly of block copolymers for nanolithographic device fabrication. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2004).Google Scholar
188.Segalman, R., Yokoyama, H., and Kramer, E.: Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13(15), 1152 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
189.Ross, C.: Templated self-assembly of block copolymers for nanolithographic device fabrication. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2009).Google Scholar
190.Kang, H., Craig, G.S.W., and Nealey, P.F.: Directed assembly of asymmetric ternary block copolymer–homopolymer blends using symmetric block copolymer into checkerboard trimming chemical pattern. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2008).Google Scholar
191.Kang, H. and Nealey, P.: Directed assembly of compositionally asymmetric ternary blends thin films on checkerboard trimming chemical pattern. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2008).Google Scholar
192.Kang, H., Craig, G., and Nealey, P.: Directed assembly of asymmetric ternary block copolymer-homopolymer blends using symmetric block copolymer into checkerboard trimming chemical pattern. J. Vac. Sci. Technol. B 26(6), 2495 (2008).CrossRefGoogle Scholar
193.Edwards, E., Stoykovich, M., Nealey, P., and Solak, H.: Binary blends of diblock copolymers as an effective route to multiple length scales in perfect directed self-assembly of diblock copolymer thin films. J Vac. Sci. Technol. B 24(1), 340 (2006).CrossRefGoogle Scholar
194.Daoulas, K., Muller, M., Stoykovich, M., Papakonstantopoulos, Y., De Pablo, J., Nealey, P., Park, S., and Solak, H.: Directed assembly of copolymer materials on patterned substrates: Balance of simple symmetries in complex structures. J. Polym. Sci., B, Polym. Phys. 44(18), 2589 (2006).CrossRefGoogle Scholar
195.Cheng, J., Rettner, C., Sanders, D., Kim, H., and Hinsberg, W.: Dense self-assembly on sparse chemical patterns: Rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 20, 3155 (2008).CrossRefGoogle Scholar
196.Bosworth, J., Black, C., and Ober, C.: Selective area control of self-assembled pattern architecture using a lithographically patternable block copolymer. ACS Nano. 3(7), 1761 (2009).CrossRefGoogle ScholarPubMed
197.Fritze, M., Bloomstein, T., Tyrrell, B., Fedynshyn, T., Efremow, N., Hardy, D., Cann, S., Lennon, D., Spector, S., and Rothschild, M.: Hybrid optical maskless lithography: Scaling beyond the 45 nm node. Macromolecules 30(22), 6810 (1997).Google Scholar
198.Stoykovich, M., Edwards, E., Kang, H., Liu, C., Welander, A., Na, Y., Park, S., Cerrina, F., de Pablo, J., and Nealey, P.: Insertion of Self-Assembling Block Copolymer Materials into the Lithographic Process, TECHCON (2007). Private communication © 2007 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers.Google Scholar
199.Cheng, J., Rettner, C., Sanders, D., Kim, H., and Hinsberg, W.: Dense self-assembly on sparse chemical patterns: Rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 20, 3155 (2008).CrossRefGoogle Scholar
200.Proceedings of SPIE, 7637 No. 76370G-10. Private communication © 2007 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers.Google Scholar
201.Black, C. and Bezencenet, O.: Nanometer-scale pattern registration and alignment by directed diblock copolymer self-assembly. IEEE Trans. NanoTechnol. 3(3), 412 (2004).CrossRefGoogle Scholar
202.Ruiz, R., Sandstrom, R., and Black, C.: Induced orientational order in symmetric diblock copolymer thin films. Adv. Mater. 19(4), 587 (2007).CrossRefGoogle Scholar
203.Cheng, J. and Ross, C.: Directed self-assembly of block copolymers. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2005).Google Scholar
204.Ruiz, R., Kang, H., Detcheverry, F., Dobisz, E., Kercher, D., Albrecht, T., De Pablo, J., and Nealey, P.: Density multiplication and improved lithography by directed block copolymer assembly. Science 321(5891), 936 (2008).CrossRefGoogle ScholarPubMed
205.Nealey, P.F. and Liu, C.: Materials and processes for nanoscale patterning. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2010).Google Scholar
206.Yang, J., Jung, Y., Chang, J., Mickiewicz, R., Alexander-Katz, A., Ross, C., and Berggren, K.: Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. Nat. Nanotechnol. 5(4), 256 (2010).CrossRefGoogle ScholarPubMed
207.Kim, S., Oh, H., Jung, Y., and Ilsin, A.: A study of virtual lithography process for polymer directed self-assembly. Microelectron. Eng. 87(58), 883 (2010).CrossRefGoogle Scholar
208.Kim, S., Misner, M., Kimura, M., and Russell, T.: Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16(3), 226 (2004).CrossRefGoogle Scholar
209.Craig, G.S.W., Kang, H., and Nealey, P.F.: Equilibration of block copolymer films on chemically patterned surfaces. Semiconductor Research Corporation, Research Engine. Web Publication P021065 (2007).CrossRefGoogle Scholar
210.Nealey, P.F.: Materials and processes for sub-32 nm lithography. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).Google Scholar
211.Zhu, S., Gambino, R., Rafailovich, M., Sokolov, J., Schwarz, S., and Gomez, R.: Microscopic magnetic characterization of submicron cobalt islands prepared using self-assembled polymer masking technique. IEEE Trans. Magn. 33(5), 3022 (1997).CrossRefGoogle Scholar
212.Welander, A., Kang, H., Stuen, K., Solak, H., Muller, M., De Pablo, J., and Nealey, P.: Rapid directed assembly of block copolymer films at elevated temperatures. Macromolecules 41(8), 2759 (2008).CrossRefGoogle Scholar
213.Black, C., Guarini, K., Milkove, K., Banker, S., Russell, T., and Tuominen, M.: Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl. Phys. Lett. 79(3), 409 (2001).CrossRefGoogle Scholar
214.Black, C., Guarini, K., Milkove, K., Baker, S., Russell, T., and Tuominen, M.: Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Phys. Rev. Lett. 79(3), 409 (2001).Google Scholar
215.Guarini, K., Black, C., Zhang, Y., Kim, H., Sikorski, E., and Babich, V.: Process integration of self-assembled polymer templates into silicon nanofabrication. J. Vac. Sci. Technol. B 20(6), 2788 (2002).CrossRefGoogle Scholar
216.Black, C.T.: Self-aligned self-assembly of multi-nanowire silicon field effect transistors. Appl. Phys. Lett. 87, 163116 (2005).CrossRefGoogle Scholar
217.Johnson, R.: Semiconductor Glossary. Semiconductor OneSource website. Friday, September 10, 2010 at http://www.eetimes.com/electronics-news/4071360/IBM-commits-to-ultimate-dielectric-air-gaps (2007).Google Scholar
218.Kramer, E.: Dynamic chi and anneal time effect on defects, SRC NNI CWG2 Workshop on Challenges in Directed Self-assembly (2006), p. 20.Google Scholar
219.Hammond, M. and Kramer, E.: Edge effects on thermal disorder in laterally confined diblock copolymer cylinder monolayers. Macromolecules 39, 1538 (2006).CrossRefGoogle Scholar
220.Ponoth, S., Horak, D., Colburn, M.E., Breyta, G., Huang, E., Sucharitaves, J., Landis, H., Lisi, A., Liu, X.S., Vo, T., Johnson, R., Li, W., Purushothaman, S., Cohen, S., Hu, C-K., Kim, H-C., Clevenger, L., Fuller, N., Nogami, T., Spooner, T., and Edelstein, D.: The Electrochemical Society, Meeting, Honolulu, HI [October 12–17, 2008]. Meeting Abstract - Electrochem. Soc. 802, 2074 (2008).Google Scholar
220a.Black, C. and Bezencenet, O.: Nanometer-scale pattern registration and alignment by directed diblock copolymer self-assembly. IEEE Transactions on Nanotechnology 3, 412 (2004).CrossRefGoogle Scholar
221.Hawker, C. and Russell, T.: Block copolymer lithography: Merging of “bottom up” with “top down” processes. MRS Bull. 30, 952 (2005).CrossRefGoogle Scholar
222.Nealey, P.: Materials and processes for sub-32 nm lithography. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2006).Google Scholar
223.Nealey, P.: Report on lithographic properties of block copolymer directed assembly. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2008).Google Scholar
224.Kang, H. and Nealey, P.: Directed assembly of compositionally asymmetric Ternary blends thin films on checkerboard trimming chemical pattern. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2009).Google Scholar
225.Guarini, K., Black, C., Milkove, K., and Sandstrom, R.: Nanoscale patterning using self-assembled polymers for semiconductor application. J. Vac. Sci. Technol. B 19(6), 2784 (2001).CrossRefGoogle Scholar
226.Schellenberg, F.: Presentation. IBM Workshop on Nanopatterns from Block Copolymer Self-Assembly (2008).Google Scholar
227.Park, S.M., Stoykovich, M.P., Ruiz, R., Zhang, Y., Black, C.T., and Nealey, P.F.: Directed assembly of lamellae-forming block copolymers by using chemically and topographically patterned substrates. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).Google Scholar
228.Jeong, B., Bae, Y., Lee, D., and Kim, S.: Biodegradable block copolymers as injectable drug delivery systems. Nature 388(6645), 860 (1997).CrossRefGoogle ScholarPubMed
229.Kataoka, K., Harada, A., and Nagasaki, Y.: Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Delivery Rev. 47(1), 113 (2001).CrossRefGoogle ScholarPubMed
230.Duncan, R.: The dawning era of polymer therapeutics. Nat. Rev. Drug Discovery 2(5), 347 (2003).CrossRefGoogle ScholarPubMed
231.Lee, C., MacKay, J., Frechet, J., and Szoka, F.: Designing dendrimers for biological applications. Nat. Biotechnol. 23(12), 1517 (2005).CrossRefGoogle ScholarPubMed
232.Beecroft, L. and Ober, C.: Nanocomposite materials for optical applications. Chem. Mater. 9(6), 1302 (1997).CrossRefGoogle Scholar
233.Ross, C., Smith, H., Savas, T., Schattenburg, M., Farhoud, M., Hwang, M., Walsh, M., Abraham, M.C., and Ram, R.J., : Fabrication of patterned media for high-density magnetic storage. J. Vac. Sci. Technol. B 17(6), 3168 (1999).CrossRefGoogle Scholar
234.Ross, C.: Patterned magnetic recording media. Annu. Rev. Mater. Res. 31, 203 (2001).CrossRefGoogle Scholar
235.Cheng, J., Ross, C., Chan, V., Thomas, E., Lammertink, R., and Vancso, G.: Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13(15), 1174 (2001).3.0.CO;2-Q>CrossRefGoogle Scholar
236.Yang, D., Chang, S., and Ober, C.: Molecular glass photoresists for advanced lithography. J. Mater. Chem. 16(18), 1693 (2006).CrossRefGoogle Scholar
237.Ji, S., Liu, C., Liu, G., and Nealey, P.: Molecular transfer printing using block copolymers. ACS Nano. 4(2), 599 (2010).CrossRefGoogle ScholarPubMed
238.Kawa, M. and Frechet, J.: Self-assembled lanthanide-cored dendrimer complexes: Enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects. Chem. Mater. 10(1), 286 (1998).CrossRefGoogle Scholar
239.Serin, J., Brousmiche, D., and Frechet, J.: Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem. Commun. (Camb.). 22, 2605 (2002).CrossRefGoogle Scholar
240.Dichtel, W., Hecht, S., and Frechet, J.: Functionally layered dendrimers: A new building block and its application to the synthesis of multichromophoric light-harvesting systems. Org. Lett. 7(20), 4451 (2005).CrossRefGoogle Scholar
241.Oar, M., Dichtel, W., Serin, J., Frechet, J., Rogers, J., Slagle, J., Fleitz, P., Tan, L., Ohulchanskyy, Y., and Prasad, P.: Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET. Chem. Mater. 18(16), 3682 (2006).CrossRefGoogle Scholar
242.SEMATECH Workshop on Directed Self Assembly: Kobe, Japan (October 20, 2010). This event was sponsored by SEMATECH and supported by the ITRS Emerging Research Materials Working Group.Google Scholar
244.Lynch, M.: Evolution of the mutation rate. Trends Genet. 26(8), 345 (2010).CrossRefGoogle ScholarPubMed
245.Lynch, M.: The rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA. 107, 961 (2010).CrossRefGoogle ScholarPubMed
246.Crow, J.F.: The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1(1), 40 (2000).CrossRefGoogle ScholarPubMed
247.Ruzyllo, J.: IBM Commits to Ultimate Dielectric: Air Gaps. EE Times Web site on Friday, September 10, 2010 at http://www.semi1source.com/glossary/default.asp?searchterm=critical+dimension%2C+CD (2009).Google Scholar
248.Haran, B., Kumar, L., Adam, L., Chang, J., Kanakasbapathy, S., Horak, D., Fan, S., and Chen, J.: 22nm Technology Compatible Fully Functional 0.1 μm2 6T-SRAM cell. IEEE Xplore Digital Library (2008), p. 1–4.Google Scholar
249.International Technology Roadmap for Semiconductors: 2009 Edition, Environment, Safety and Health Chapter (2009), p. 1–30. International SEMATECH, Austin, TX.Google Scholar
250.ITRS Home: ITRS website on Friday, September 10, 2010 at http://www.itrs.net/ (2010).Google Scholar
251.ITRS Teams: ITRS website on Friday, September 10, 2010 at http://www.itrs.net/ (2010).Google Scholar
252.The International Roadmap Committee Position on Technology Pacing: ITRS Web site on Friday, September 10, 2010 at http://www.itrs.net/links/2007ITRS/IRCPosition.html (2010).Google Scholar
253.Thompson, L. and Kerwin, R.: Polymer resist systems for photolithography and electron lithography. Annu. Rev. Mater. Sci. 6, 267 (1976).CrossRefGoogle Scholar
254.Fedynshyn, T., Astolfi, D., Goodman, R., Cann, S., and Roberts, J.: Contributions of resist polymers to innate material roughness. J. Vac. Sci. Technol. B 26(6), 2281 (2008).CrossRefGoogle Scholar