Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T07:13:51.880Z Has data issue: false hasContentIssue false

Direct measurement of surface forces between sapphire crystals in aqueous solutions

Published online by Cambridge University Press:  31 January 2011

R. G. Horn
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, GPO Box 4, Canberra, Australia.
D. R. Clarke
Affiliation:
Thomas J. Watson Research Center, IBM Research Division, Yorktown Heights, New York 10598
M. T. Clarkson
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, GPO Box 4, Canberra, Australia
Get access

Abstract

Measurements are presented of the electrical double layer and van der Waals forces between the (0001) surfaces of two single-crystal sapphire platelets immersed in an aqueous solution of NaCl at pH values from 6.7 to 11. The results fit the standard Deryaguin-Landau-Verwey-Overbeek (DLVO) theory, with a Hamaker constant of 6.7 × 10−20 J. These are the first measurements made using the Israelachvili surface forces apparatus without mica as a substrate material, and they demonstrate the possibility of using this technique to explore the surface chemistry of a wider range of materials.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Clarke, D. R., Lawn, B. R., and Roach, D. H., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1986), Vol. 8.Google Scholar
2Clarke, D. R., J. Am. Ceram. Soc. 70, 15 (1987).CrossRefGoogle Scholar
3Israelachvili, J. N. and Adams, G. E., J. Chem. Soc. Faraday Trans. I 74, 975 (1978).CrossRefGoogle Scholar
4Israelachvili, J. N., Intermolecular and Surface Forces (Academic, New York, 1985).Google Scholar
5Pashley, R. M., J. Colloid Interface Sci. 85, 531 (1981).CrossRefGoogle Scholar
6Horn, R. G. and Israelachvili, J. N., J. Chem. Phys. 75, 1400 (1981).CrossRefGoogle Scholar
7Christenson, H. K., J. Chem. Phys. 78, 6906 (1983).CrossRefGoogle Scholar
8Pashley, R. M., McGuiggan, P. M., Ninham, B. W., and Evans, D. F., Science 229, 1088 (1985).CrossRefGoogle Scholar
9Pashley, R. M., McGuiggan, P. M., Ninham, B. W., Brady, J., and Evans, D. F., J. Phys. Chem. 90, 1637 (1986).CrossRefGoogle Scholar
10Marra, J. and Israelachvili, J. N., Biochemistry 24, 4608 (1985).CrossRefGoogle Scholar
11White, H. S., submitted to J. Colloid Interface Sci.Google Scholar
12Parker, J. L. and Christenson, H. K., submitted to J. Chem. Phys.Google Scholar
13Derjaguin, B. V., Rabinovich, Y. I., and Churaev, N. V., Nature 272, 313 (1978).CrossRefGoogle Scholar
14Knapschinski, L., Katz, W., Ehmke, B., and Sonntag, H., Colloid Polym. Sci. 260, 1153 (1982).CrossRefGoogle Scholar
15Roberts, A. D., J. Colloid Interface Sci. 41, 23 (1972).CrossRefGoogle Scholar
16Hough, D. B. and Ottewill, R. H., Prog. Colloid Polym. Sci. 68, 101 (1983).CrossRefGoogle Scholar
17Peschel, G. and Belouschek, P., Z. Naturforsch. A 35, 869 (1980).CrossRefGoogle Scholar
18Tonck, A., Georges, J. M., and Loubet, J. L., J. Colloid Interface Sci. (to be published).Google Scholar
19Derjaguin, B. V., Voropayeva, T. N., Kabanov, B. N., and Titiyevskaya, A. S., J. Colloid Sci. 19, 113 (1964).CrossRefGoogle Scholar
20White, E. A. D. and Wood, J. D. C., J. Mater. Sci. 9, 1999 (1974).CrossRefGoogle Scholar
21Derjaguin, B. V., Kolloid Zh. 69, 155 (1934).CrossRefGoogle Scholar
22Israelachvili, J. N., J. Colloid Interface Sci. 44, 259 (1973).CrossRefGoogle Scholar
23Johnson, K. L., Kendall, K., and Roberts, A. D., Proc. R. Soc. London A 324, 301 (1971).Google Scholar
24Derjaguin, B. V., Muller, V. M., and Toporov, Y. P., J. Colloid Interface Sci. 53, 314 (1975).CrossRefGoogle Scholar
25Horn, R. G., Israelachvili, J. N., and Pribac, F., J. Colloid Interface Sci. 115, 480 (1987).CrossRefGoogle Scholar
26Deryaguin, B. V. and Landau, L., Acta Phys. Chim. URSS 14, 633 (1941); E. J. W. Verwey and J. Th. G. Overbeek, Theory of The Stability ofLyophobic Colloids (Elsevier, Amsterdam, 1948).Google Scholar
27Chan, D. Y. C., Pashley, R. M., and White, L. R., J. Colloid Interface Sci. 77, 283 (1980).CrossRefGoogle Scholar
28Hough, D. B. and White, L. R., Adv. Colloid Interface Sci. 14, 3 (1980).CrossRefGoogle Scholar
29Yopps, J. A. and Fuerstenau, D. W., J. Colloid Sci. 19, 61 (1964).CrossRefGoogle Scholar
30Parks, G. A., Chem. Rev. 65, 177 (1965).CrossRefGoogle Scholar
31Healy, T. W., University of Melbourne (private communication).Google Scholar
32See for instance, Robinson, M., Pask, J. A., and Fuerstenau, D. W., J. Am. Ceram. Soc. 47, 516 (1964).CrossRefGoogle Scholar
33Claesson, P., Horn, R. G., and Pashley, R. M., J. Colloid Interface Sci. 100, 250 (1984).CrossRefGoogle Scholar
34Horn, R. G., Evans, D. F., and Ninham, B. W., J. Phys. Chem. (to be published).Google Scholar