Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T15:39:20.207Z Has data issue: false hasContentIssue false

Direct Conversion of TiO2 Sol to Nanocrystalline Anatase at 85 °C

Published online by Cambridge University Press:  31 January 2011

K. I. Gnanasekar
Affiliation:
Surface Science, Spectroscopy and Solid State Ionics Laboratory, Department of Physics, Southern University and A&M College, Baton Rouge, Louisiana 70813.
V. Subramanian
Affiliation:
Surface Science, Spectroscopy and Solid State Ionics Laboratory, Department of Physics, Southern University and A&M College, Baton Rouge, Louisiana 70813.
J. Robinson
Affiliation:
Surface Science, Spectroscopy and Solid State Ionics Laboratory, Department of Physics, Southern University and A&M College, Baton Rouge, Louisiana 70813.
K. I. Gnanasekar
Affiliation:
Surface Science, Spectroscopy and Solid State Ionics Laboratory, Department of Physics, Southern University and A&M College, Baton Rouge, Louisiana 70813.
K. I. Gnanasekar
Affiliation:
Surface Science, Spectroscopy and Solid State Ionics Laboratory, Department of Physics, Southern University and A&M College, Baton Rouge, Louisiana 70813.
K. I. Gnanasekar
Affiliation:
Surface Science, Spectroscopy and Solid State Ionics Laboratory, Department of Physics, Southern University and A&M College, Baton Rouge, Louisiana 70813.
J. C. Jiang
Affiliation:
Mechanical Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803
Fanney E. Posey
Affiliation:
Biotechnology Center For Fuels and Chemicals, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, Colorado 80401
B. Rambabu*
Affiliation:
Surface Science, Spectroscopy and Solid State Ionics Laboratory, Department of Physics, Southern University and A&M College, Baton Rouge, Louisiana 70813.
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocrystalline TiO2 anatase with particle size in the range of 5–7 nm has been prepared by in situ cracking of the sol at 85 °C, thereby avoiding the intermediate gel formation process. Hydrolysis of Ti(O-isoPr)4 was carried out in excess of 2-propanol to keep the suspension of fine particles from agglomeration. Differential thermal analysis, thermogravimetric analysis, differential scanning calorimetry, powder x-ray diffraction (XRD), and electron microscopy have been used to characterize the samples. Gel to crystalline conversion, which requires a temperature of at least 400 °C, can be achieved by digesting the TiO2 sol at 85 °C. XRD and selected area electron diffraction patterns show the presence of a small amount of brookite phase along with the major anatase phase. High-resolution transmission electron microscopy shows that the average grain size of TiO2 particle remains around 5–9 nm even when heated at 510 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Regan, B.O. and Gratzel, M., Nature 353, 737 (1991).CrossRefGoogle Scholar
2.Matthews, R.W., J. Catal. 113, 549 (1988).CrossRefGoogle Scholar
3.Tanaka, K. and Mario, V., Chem. Phys. Lett. 187, 73 (1991).CrossRefGoogle Scholar
4.Harris, L.A., J. Electrochem. Soc. 127, 2657 (1980).CrossRefGoogle Scholar
5.Takami, A., Am. Ceram. Soc. Bull. 67, 1956 (1988).Google Scholar
6.Bbrinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, San Diego, CA, 1990), Chapter 4.Google Scholar
7.Jean, J.H. and Ring, T.A., Colloids Surf. 29, 273 (1988).CrossRefGoogle Scholar
8.Nagpal, V.J., Riffle, J.S., and Davis, R.M., Colloids Surf. 87, 25 (1994).CrossRefGoogle Scholar
9.Nagpal, V.J., Davis, R.M., and Desu, S.B., J. Mater. Res. 10, 3068 (1995).CrossRefGoogle Scholar
10.Jean, J.H. and Ring, T.A., Am. Ceram. Soc. Bull. 65, 1574 (1986).Google Scholar
11.Edelson, L.H. and Glaeser, A.M., J. Am. Ceram. Soc. 71, 225 (1988).CrossRefGoogle Scholar
12.Nagpal, V.J., Davis, R.M., and Desu, S.B., J. Mater. Res. 10, 3068 (1995).CrossRefGoogle Scholar
13.Xu, Q. and Anderson, M.A., J. Am. Ceram. Soc. 77, 1939 (1994).CrossRefGoogle Scholar
14.Haro-Poniatowski, E. and Rodriquez-Talavera, R., J. Mater. Res. 9, 2102 (1994).CrossRefGoogle Scholar
15.Zhang, R. and Gao, L., Mater. Res. Bull. 36, 1957 (2001).CrossRefGoogle Scholar
16.Bischoff, B.L. and Anderson, M., Chem. Mater. 7, 1772 (1995).CrossRefGoogle Scholar
17.Barbe, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., and Gratzel, M., J. Am. Ceram. Soc. 80, 3157 (1997).CrossRefGoogle Scholar
18.Chiang, Y.M., J. Electroceram. 1, 205 (1997).CrossRefGoogle Scholar
19.Trimp, G., editor, Nanotechnology, edited by Trimp, G. (AIP Press, Springer-Verlag, New York, 1999).CrossRefGoogle Scholar
20.Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., Sens. Actuators B 3, 147 (1991).CrossRefGoogle Scholar
21.Brinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, San Diego, CA, 1990), Chapter 4.Google Scholar
22.Tonejc, A.M., Turkovic, A., Gotic, M., Music, S., Vukovic, M., Trojko, R., and Tonejc, A., Mater. Lett. 31, 127 (1997).CrossRefGoogle Scholar
23.Xu, Q. and Anderson, M.A., J. Mater. Res. 6, 1073 (1991).CrossRefGoogle Scholar
24.Gaynor, A.G., Gonzales, R.J., Davis, R.M., and Zallen, R., J. Mater. Res. 12, 1755 (1997).CrossRefGoogle Scholar
25.Stonehart, P., J. Appl. Electrochem. 22, 995 (1992).CrossRefGoogle Scholar