Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T00:26:54.209Z Has data issue: false hasContentIssue false

Diamond nucleation on surfaces using carbon clusters

Published online by Cambridge University Press:  03 March 2011

R.J. Meilunas
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208–3108
R.P.H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208–3108
Get access

Abstract

Thin solid films of C60 and C70 have been used as nucleating layers for the growth of diamond thin films on a variety of substrate surfaces, including metal, insulator, and semiconductors. Compared to other forms of carbon, such as graphite, amorphous carbon, soot, etc., it is found that the nucleation density on a C70 film is equivalent to that of diamond seeds themselves. On the other hand, diamond nucleation on a C60 film is less favorable. We argue from our experiments that the reason for C70 film to have such favorable nucleating properties is its chemical stability and geometry. A working model is proposed to explain the nucleation of diamond on solid C70 films. Application of this work extending to the growth of diamond on a wide range of substrates is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Koizumi, S. and Inuzuka, T., J. Cryst. Growth 99, 1188 (1990).CrossRefGoogle Scholar
2Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
3Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).CrossRefGoogle Scholar
4Hirose, Y. and Kondo, N., Jpn. Appl. Phys. Soc. Meeting, March 29 (1988).Google Scholar
5Mitsuda, Y., Yoshida, T., and Akashi, K., Rev. Sci. Instrum. 60, 249 (1989).CrossRefGoogle Scholar
6Meilunas, R. J., Chang, R. P. H, Liu, S., and Kappes, M. M., Appl. Phys. Lett. 59, 3461 (1991).CrossRefGoogle Scholar
7Yarbrough, W. A., Inspektor, A., and Messier, R., Mater. Sci. Forum 52, 151 (1989).Google Scholar
8Iijima, S., Aikawa, Y., and Baba, K., Appl. Phys. Lett. 57, 2646 (1990).CrossRefGoogle Scholar
9Ravi, K. V. and Koch, C. A., Appl. Phys. Lett. 57, 348 (1990).CrossRefGoogle Scholar
10Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1037 (1991).CrossRefGoogle Scholar
11Rudder, R. A., Hudson, G. C., Posthill, J. B., Thomas, R. E., and Markunas, R. J., Appl. Phys. Lett. 59, 791 (1991).CrossRefGoogle Scholar
12Yehoda, J. E., Fuentes, R. I., Tsang, J. C., Whitehair, S. J., Guarnieri, C. R., and Cuomo, J. J., Appl. Phys. Lett. 60, 2865 (1992).CrossRefGoogle Scholar
13Geis, M. W., private communication (1991).Google Scholar
14Meilunas, R. J., unpublished results.Google Scholar
15Matsumoto, S. and Matsui, Y., J. Mater. Sci. 18, 178 (1983).CrossRefGoogle Scholar
16Godleski, S. A., Schleyer, P. V., Osawa, E., and Wipke, W. T., Prog. Phys. Org. Chem. 13, 63 (1981).CrossRefGoogle Scholar
17Stein, S. E., Nature 346, 517 (1990).CrossRefGoogle Scholar
18Angus, J. C., Buck, F. A., Sunkara, M., Grot, T. F., Hayman, C. C., and Gat, R., MRS Bull. XIV, 38 (1989).CrossRefGoogle Scholar
19Angus, J. C., Sunkara, M., Hayman, C. C., and Buch, F. A., Carbon 28, 745 (1991).Google Scholar
20Stein, S. E. and Fahr, A., J. Phys. Chem. 89, 3714 (1985).CrossRefGoogle Scholar
21Stein, S. E., J. Phys. Chem. 825, 566 (1978).CrossRefGoogle Scholar
22Frenklach, M. and Wang, H., Phys. Rev. B 432, 1520 (1991).CrossRefGoogle Scholar
23Shen, M., Schaefer, H. F., Liang, C., Lii, J., Allinger, N. L., and Schleyer, P. R., J. Am. Chem. Soc. 114, 497 (1992).CrossRefGoogle Scholar
24Stoner, B. R., Ma, G. H. M, Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
25Belton, D. N. and Schmieg, S. J., J. Appl. Phys. 66, 4223 (1989).CrossRefGoogle Scholar
26Ong, T. P., Xiong, F. L., and Chang, R. P. H., Appl. Phys. Lett. 60, 2083 (1992).CrossRefGoogle Scholar
27Kratschmer, W., Lamb, L., Fostiropoulos, K., and Huffman, D., Nature 347, 354 (1990).CrossRefGoogle Scholar
28Kratschmer, W., Fostiropoulos, K., and Huffman, D., Chem. Phys. Lett. 170, 167 (1990).CrossRefGoogle Scholar
29Whetten, R. L., Alvarez, M. M., Anz, S. J., Schriver, K. E., Beck, R. D., Diederich, F. N., Rubin, Y., Ettl, R., Foote, C. S., Darmanyan, A. P., and Arbogast, J. W., in Clusters and Cluster-Assembled Materials, edited by Averback, R. S., Bernholc, J., and Nelson, D. L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 639.Google Scholar
30Aje, H., Alvarez, M., Anz, S., Beck, R., Diederich, F., Fostiropoulos, K., Huffman, D., Kratschmer, W., Rubin, Y., Schriver, K., Sensharma, D., and Whetten, R. J., Phys. Chem. 94, 8630 (1990).CrossRefGoogle Scholar
31Meilunas, R. J., Chang, R.P.H., Liu, S., and Kappes, M. M., Appl. Phys. Lett. 70, 1 (1991).Google Scholar
32Liu, S., Lu, Y., Kappes, M. M., and Ibers, J. A., unpublished results.Google Scholar
33Dravid, V., Liu, S., and Kappes, M. M., Chem. Phys. Lett. (1991, in press).Google Scholar
34Johnson, R. D., Meijer, G., Salem, J. R., and Bethune, D. S., J. Am. Chem. Soc. 113, 3619 (1991).CrossRefGoogle Scholar
35Manolopoulos, D. E., May, J. C., and Down, S. E., Chem. Phys. Lett. 128, 105 (1991).CrossRefGoogle Scholar
36Scuseria, G. E., Chem. Phys. Lett. 1805, 451 (1991).CrossRefGoogle Scholar
37Badzian, A. R. and Badzian, T., in Extended Abstracts No. 15, Diamond and Diamond-Like Materials Synthesis, edited by Johnson, G. H., Badzian, A. R., and Geis, M.W. (Materials Research Society, Pittsburgh, PA, 1988), p. 27. Badzian, A. R., Badzian, T., Roy, R., Messier, R., and Spear, K. E., Mater. Res. Bull. XXIII, 531 (1988). Badzian, A. and DeVries, R. C., Mater. Res. Bull. XXIII, 385 (1988).Google Scholar
38Angus, J. C., ACS Diamond Meeting, Spring 1990, Washington, DC.Google Scholar
39Chapman, B., Glow Discharge Processes (John Wiley, New York, 1980).Google Scholar
40Suzuki, K., Okudaira, S., Sakudo, N., and Kanomata, I., Jpn. J. Appl. Phys. 16, 11 (1979).Google Scholar
41Vandentop, G. J., Nascente, P. A. P, Kawasaki, M., Ogletree, D. F., Somorjai, G. A., and Salmeron, M., J. Vac. Sci. Technol. A 9, 2273 (1991).CrossRefGoogle Scholar
42Vossen, J. L., J. Vac. Sci. Technol. 8, S12 (1971).CrossRefGoogle Scholar
43Beck, R. D., John, P. St., Alvarez, M. M., Diederich, F., and Whetten, R. L., J. Phys. Chem. (1991, in press).Google Scholar
44Zhang, Q. L., O'Brien, S. C., Heath, J. R., Liu, Y., Curl, R. F., Kroto, Ph. W., and Smalley, R.E., J. Phys. Chem. 90, 525 (1986).CrossRefGoogle Scholar
45Brown, T. L. and Lemay, E. H., Chemistry, The Central Science (Prentice-Hall, Englewood Cliffs, NJ), p. 189.Google Scholar
46Zhang, J., Huang, B., Reinhard, D. K., and Asmussen, J. Jr., J. Vac. Sci. Technol. A 8, 2124 (1991).CrossRefGoogle Scholar
47Tsuda, M., Nakajama, N., and Okawa, S., J. Am. Chem. Soc. 108, 5780 (1986); Jpn. J. Appl. Phys. 26, 1527.CrossRefGoogle Scholar
48Liu, S., unpublished results.Google Scholar