Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T13:29:21.588Z Has data issue: false hasContentIssue false

Diamond growth using carbon monoxide as a carbon source

Published online by Cambridge University Press:  31 January 2011

F.M. Cerio*
Affiliation:
Chemistry Division, Research Department, Naval Weapons Center, China Lake, California 93555
W.A. Weimer
Affiliation:
Chemistry Division, Research Department, Naval Weapons Center, China Lake, California 93555
C.E. Johnson
Affiliation:
Chemistry Division, Research Department, Naval Weapons Center, China Lake, California 93555
*
a)Present address: Crystallume, Menlo Park, California 94025.
Get access

Abstract

Polycrystalline diamond films were produced in a microwave plasma assisted CVD reactor using CO as the carbon source gas. Reactor exhaust gas compositions were determined by mass spectrometry using 2–10% CO and 0–1.5% O2 in H2 feed gas mixtures. The chemistry involved in the gas phase is similar to that which occurs when diamond is grown using hydrocarbons as carbon source gases. A chemical mechanism for the oxidation of CH4 in flames appears to be applicable to this system. Addition of O2 to the reactor feed gas results in increased growth rates for low addition levels possibly due to activation of the diamond surface, while lower growth rates result at high addition levels due to oxidation of carbon from the surface and depletion of diamond growth precursors in the gas phase. The chemical reactions that take place in the plasma are similar to those that occur in flames and hot filament reactors, indicating that the plasma acts to induce reactions that are normally associated with high temperature combustion processes.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
2.Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).CrossRefGoogle Scholar
3.Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
4.Harker, A. B. and DeNatale, J. F., J. Mater. Res. 5, 818 (1990).CrossRefGoogle Scholar
5.Kawato, T. and Kondo, K-i., Jpn. J. Appl. Phys. 26, 1429 (1987).CrossRefGoogle Scholar
6.Harris, S. J. and Weiner, A. M., Appl. Phys. Lett. 55, 2179 (1989).CrossRefGoogle Scholar
7.Chen, C-F., Huang, Y. C., Hosomi, S., and Yoshida, I., Mater. Res. Soc. Bull. XXIV, 87 (1989).CrossRefGoogle Scholar
8.Liou, Y., Inspektor, A., Weimer, R., and Messier, R., Appl. Phys. Lett. 55, 631 (1989).CrossRefGoogle Scholar
9.Liou, Y., Weimer, R., Knight, K., and Messier, R., Appl. Phys. Lett. 56, 437 (1990).CrossRefGoogle Scholar
10.Saito, Y., Sato, K., Tanaka, H., Fujit, K., and Matuda, S., J. Mater. Sci. 23, 842 (1988).CrossRefGoogle Scholar
11.Mucha, J. A., Flamm, D. L., and Ibbotson, D. E., J. Appl. Phys. 65, 3448 (1989).CrossRefGoogle Scholar
12.Liou, Y., Inspektor, A., Weimer, R., Knight, D., and Messier, R., J. Mater. Res. 5, 2305 (1990).CrossRefGoogle Scholar
13.Chang, C-P., Flamm, D. L., Ibbotson, D. E., and Mucha, J. A., J. Appl. Phys. 63, 1744 (1988).CrossRefGoogle Scholar
14.Weimer, W. A., Cerio, F. M., and Johnson, C. E., J. Mater. Res. 6, 2134 (1991).CrossRefGoogle Scholar
15.Hirose, Y. and Terasawa, Y., Jpn. J. Appl. Phys. 25, L519 (1986).CrossRefGoogle Scholar
16.Watanabe, I. and Sugata, K., Jpn. J. Appl. Phys. 27, 1397 (1988).CrossRefGoogle Scholar
17.Wei, J., Kawarada, H., Suzuki, J-i., and Hiraki, A., J. Cryst. Growth 99, 1201 (1990).CrossRefGoogle Scholar
18.Ito, K., Ito, T., and Hosoya, I., Chem. Lett. 589 (1988).CrossRefGoogle Scholar
19.Suzuki, J., Kawarada, H., Mar, K-S., Wei, J., Yokota, Y., and Hiraki, A., Jpn. J. Appl. Phys. 28, L281 (1989).CrossRefGoogle Scholar
20.Saito, Y., Sato, K., Gomi, K., and Miyadera, H., J. Mater. Sci. 25, 1246 (1990).CrossRefGoogle Scholar
21.Hayashi, N., Etoh, Y., Kazahaya, T., and Aketagawa, M., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Int. Symp. Proc. NDST-2, Pittsburgh, PA, 1991).Google Scholar
22.Ito, T. and Hayashi, N., New Diamond, 83 (1990).Google Scholar
23.Muranaka, Y., Yamashita, H., Sato, K., and Miyadera, H., J. Appl. Phys. 67, 6247 (1990).CrossRefGoogle Scholar
24. C-Wu, H., Tamor, M. A., Potter, T. J., and Kaiser, E. W., J. Appl. Phys. 68, 4825 (1990).CrossRefGoogle Scholar
25.Celii, F. G., Pehrsson, P. E., Wang, H-t., and Butler, J. E., Appl. Phys. Lett. 52, 2043 (1988).CrossRefGoogle Scholar
26.Butler, J. E., Celii, F. G., Oakes, D. B., Hanssen, L. M., Carrington, W. A., and Snail, K. A., High Temp. Sci. 27, 183 (1990).Google Scholar
27.Harris, S. J., Weiner, A. M., and Perry, T. A., Appl. Phys. Lett. 53, 1605 (1988).CrossRefGoogle Scholar
28.Harris, S. J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).CrossRefGoogle Scholar
29.Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990).CrossRefGoogle Scholar
30.Harris, S. J. and Martin, L. R., J. Mater. Res. 5, 2313 (1990).CrossRefGoogle Scholar
31.Goodwin, D. G. and Gavillet, G. G., J. Appl. Phys. 68, 6393 (1990).CrossRefGoogle Scholar
32.Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 6379 (1988).CrossRefGoogle Scholar
33.Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
34.Frenklach, M. and Wang, H., Phys. Rev. B 43, 1520 (1991).CrossRefGoogle Scholar
35.Yarbrough, W. A., Tankala, K., and DebRoy, T., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Int. Symp. Proc. NDST-2, Pittsburgh, PA, 1991).Google Scholar
36.Harris, S. J. and Weiner, A. M., Appl. Phys. Lett. 55, 2179 (1989).CrossRefGoogle Scholar
37.Johnson, C. E., Weimer, W. A., and Harris, D. C., Mater. Res. Bull. XXIV, 1127 (1989).CrossRefGoogle Scholar
38.Warnatz, J., in Combustion Chemistry, edited by Gardiner, W. C. Jr (Springer-Verlag, New York, 1984), p. 203.Google Scholar
39.Kawarada, M., Kurihara, K., Sasaki, K., Teshima, A., and Koshino, K., in Diamond Optics II, edited by Feldman, A. and Holly, S. (Proc. SPIE, 1146 San Diego, CA, 1989), p. 28.Google Scholar
40.Harris, S. J., Belton, D. N., Weiner, A. M., and Schmieg, S. J., J. Appl. Phys. 66, 5353 (1989).CrossRefGoogle Scholar