Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T11:49:13.685Z Has data issue: false hasContentIssue false

Development of multilayered biomimetic bone plates: In vitro release assessment

Published online by Cambridge University Press:  21 January 2019

R. Seda Tığlı Aydın*
Affiliation:
Department of Biomedical Engineering, Bülent Ecevit University, İncivez-Zonguldak 67100, Turkey; and Department of Nanotechnology Engineering, Bülent Ecevit University, İncivez-Zonguldak 67100, Turkey
Seda Uyanık
Affiliation:
Department of Nanotechnology Engineering, Bülent Ecevit University, İncivez-Zonguldak 67100, Turkey
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

In this study, Sr-incorporated nano-assembled hydroxyapatite structures (HASr) on 316L stainless steel bone plates were prepared by a biomimetic method induced by 10× simulated body fluid (SBF). First, HASr was coated on bone plates by the interaction of ions with 10× SBF containing different concentration of strontium ions. Then, silver coating is achieved as a second layer on bone plates. The cumulative release of strontium ions (Sr2+) and silver ions (Ag+) from multilayered HASr-Ag bone plates at the end of 15 days was in the range of 0.016–0.085 mM and 0.064–0.135 mM, respectively. The release mechanism for the bone plates was evaluated by several mathematical models that best fit the release data. The results showed that Sr2+ and Ag+ are released from multilayered bone plates by diffusion, whereas the release of Ag+ is not occurred by diffusion, instead the mechanism is dissolution, when silver is coated alone on bone plates.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hanawa, T.: Overview of metals and applications. In Metals for Biomedical Devices (Woodhead Publishing, Oxford, 2010); pp. 324.CrossRefGoogle Scholar
Bir, F., Khireddine, H., Touati, A., Sidane, D., Yala, S., and Oudadesse, H.: Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates. Appl. Surf. Sci. 258, 7021 (2012).CrossRefGoogle Scholar
Ganser, A., Thompson, R.E., Tami, I., Neuhoff, D., Steiner, A., and Ito, K.: An in vivo experimental comparison of stainless steel and titanium Schanz screws for external fixation. Eur. J. Trauma Emerg. Surg. 59, 33 (2007).Google Scholar
Nordström, E.G. and Muñoz, O.L.S.: Physics of bone bonding mechanism of different surface bioactive ceramic materials in vitro and in vivo. Biomed. Mater. Eng. 11, 221 (2001).Google ScholarPubMed
Xia, W., Lindahl, C., Lausma, J., Borchardt, P., Ballo, A., Thomsen, P., and Engqvist, H.: Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta Biomater. 6, 1591 (2010).CrossRefGoogle ScholarPubMed
Pham, T.N., Dinh, T.M.T., Nguyen, T.T., Nguyen, T.P., Kergourlay, E., Grossin, D., Bertrand, G., Pebere, N., Marcelin, S.J., Charvillat, C., and Drouet, C.: Operating parameters effect on physicochemical characteristics of nanocrystalline apatite coatings electrodeposited on 316L stainless steel. Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 035001 (2017).Google Scholar
Lina, F-H., Hsub, Y-S., Linb, S-H., and Sun, J-S.: The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials 23, 4029 (2002).CrossRefGoogle Scholar
Babu, N.R., Manwatkar, S., Rao, K.P., and Kumar, T.S.S.: Bioactive coatings on 316L stainless steel implants. Trends Biomater. Artif. Organs 17, 43 (2004).Google Scholar
Valanezahad, A., Ishikawa, K., Tsuru, K., Maruta, M., and Matsuya, S.: Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid. Dent. Mater. J. 749, 30 (2011).Google Scholar
Mehboob, H., Awais, M., Khalid, H., Ch, A.A., Siddiqi, S.A., and Rehman, I.: Polymer-assisted deposition of hydroxyapatite coatings using electrophoretic technique. Biomed. Eng. 26, 1450073 (2014).Google Scholar
Kokubo, T. and Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).CrossRefGoogle ScholarPubMed
Oyane, A., Kim, H.M., Furuya, T., Kokubo, T., Miyazaki, T., and Nakamura, T.: Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. 65, 188 (2003).CrossRefGoogle ScholarPubMed
Maviş, B., Demirtaş, T.T., Gümüşderelioğlu, M., Gündüz, G., and Çolak, Ü.: Synthesis, characterization and osteoblastic activity of PCL nanofibers coated with biomimetic calcium phosphate. Acta Biomater. 5, 3098 (2009).CrossRefGoogle ScholarPubMed
Wu, C., Chang, J., Zhai, W., and Ni, S.: A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J. Mater. Sci.: Mater. Med. 18, 857 (2007).Google ScholarPubMed
Demirtaş, T.T., Kaynak, G., and Gümüşderelioğlu, M.: Bone-like hydroxyapatite precipitated from 10× SBF-like solution by microwave irradiation. Mater. Sci. Eng., C 49, 713 (2015).CrossRefGoogle Scholar
Tunçay, E.Ö., Demirtaş, T.T., and Gümüşderelioğlu, M.: Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds. J. Trace Elem. Med. Biol. 40, 72 (2017).CrossRefGoogle ScholarPubMed
Dahl, S.G., Allain, P., Marie, P.J., Mauras, Y., Boivin, G., Ammann, P., Tsouderos, Y., Delmas, P.D., and Christiansen, C.: Incorporation and distribution of strontium in bone. Bone 28, 446 (2001).CrossRefGoogle ScholarPubMed
Marie, P.J.: Optimizing bone metabolism in osteoporosis: Insight into the pharmacologic profile of strontium ranelate. Osteoporosis Int. 14, 9 (2003).CrossRefGoogle ScholarPubMed
Pereiro, I., Rodriguez-Valencia, C., Serra, C., Solla, E.L., Serra, J., and Gonzalez, P.: Pulsed laser deposition of strontium-substituted hydroxyapatite coatings. Appl. Surf. Sci. 258, 9192 (2012).CrossRefGoogle Scholar
Boyd, A.R., Rutledge, L., Randolph, L.D., and Meenana, B.J.: Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique. Mater. Sci. Eng., C 46, 290 (2015).CrossRefGoogle Scholar
Wong, C.T., Lu, W.W., Chan, W.K., Cheung, K.M., Luk, K.D., Lu, D.S., Rabie, A.B., Deng, L.F., and Leong, J.C.: In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement. J. Biomed. Mater. Res. 68A, 513 (2004).CrossRefGoogle Scholar
Ni, G.X., Lu, W.W., Chiu, K.Y., Li, Z.Y., Fong, D.Y., and Luk, K.D.: Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: An in vivo study. J. Biomed. Mater. Res., Part B 77, 409 (2006).CrossRefGoogle ScholarPubMed
Xia, W., Lindahl, C., Lausmaa, J., Borchardt, P., Ballo, A., Thomsen, P., and Engqvist, H.: Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta Biomater. 6, 1591 (2010).CrossRefGoogle ScholarPubMed
Xue, W., Hosick, H.L., Bandyopadhyay, A., Bose, S., Ding, C., Luk, K.D.K., Cheung, K.M.C., and Lu, W.W.: Preparation and cell-materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surf. Coat. Technol. 201, 4685 (2007).CrossRefGoogle Scholar
Albers, C.E., Hofstetter, W., Siebenrock, K.A., Landmann, R., and Klenke, F.M.: In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 7, 30 (2013).CrossRefGoogle ScholarPubMed
Melaiye, A. and Youngs, W.J.: Silver and its application as an antimicrobial agent. Expert Opin. Ther. Pat. 15, 125 (2005).CrossRefGoogle Scholar
Ciobanu, C.S., Massuyeau, F., Constantin, L.V., and Predoi, D.: Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 °C. Nanoscale Res. Lett. 613, 1 (2011).Google Scholar
Feng, Q.L., Kim, T.N., Wu, J., Park, E.S., Kim, J.O., Lim, D.Y., and Cui, F.Z.: Antibacterial effects of Ag-HAp thin films on alumina substrates. Thin Solid Films 335, 214 (1998).CrossRefGoogle Scholar
Chen, W., Liu, Y., Courtney, H.S., Bettenga, M., Agrawal, C.M., Bumgardner, J.D., and Ong, J.L.: In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27, 5512 (2006).CrossRefGoogle ScholarPubMed
Mirzaee, M., Vaezi, M., and Palizdar, Y.: Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Mater. Sci. Eng., C 69, 675 (2016).CrossRefGoogle ScholarPubMed
Fielding, G.A., Roy, M., Bandyopadhyay, A., and Bose, S.: Antibacterial and biological characteristics of plasma sprayed silver and strontium doped hydroxyapatite coatings. Acta Biomater. 8, 3144 (2012).CrossRefGoogle ScholarPubMed
Huang, Y., Zhang, X., Zhang, H., Qiao, H., Zhang, X., Jia, T., Han, S., Gao, Y., Xiao, H., and Yang, H.: Fabrication of silver- and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity. Ceram. Int. 43, 992 (2017).CrossRefGoogle Scholar
Geng, Z., Wang, R., Zhuo, X., Li, Z., Huang, Y., and Ma, L.: Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater. Sci. Eng., C 71, 852 (2017).CrossRefGoogle ScholarPubMed
Hazer, D.B., Sakar, M., Dere, Y., Altinkanat, G., Ziyal, M.I., and Hazer, B.: Antimicrobial effect of polymer-based silver nanoparticle coated pedicle screws—experimental research on biofilm inhibition in rabbits. Spine 41, 323 (2016).CrossRefGoogle ScholarPubMed
Hadjiioannou, T.P., Christian, G.D., Koupparis, M.A., and Macheras, P.E.: Quantitative Calculations in Pharmaceutical Practice and Research (VCH Publishers, New York, New York, 1993).Google Scholar
Bourne, D.W.A.: Pharmacokinetics. In Modern Pharmaceutics (Marcel Dekker, New York, New York, 2002); pp. 6793.Google Scholar
Higuchi, T.: Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52, 1145 (1963).CrossRefGoogle ScholarPubMed
Hixson, A.W. and Crowell, J.H.: Dependence of reaction velocity upon surface and agitation. Ind. Eng. Chem. 23, 923 (1931).CrossRefGoogle Scholar
Tavares, D.S., Resende, C.X., Quitan, M.P., Castro, L.O., Granjeiro, J.M., and Soares, G.A.: Incorporation of strontium up to 5 mol. (%) to hydroxyapatite did not affect its cytocompatibility. Mater. Res. 14, 456 (2011).CrossRefGoogle Scholar
Mandair, G.S. and Morris, M.D.: Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep. 4, 620 (2015).CrossRefGoogle ScholarPubMed
Quade, M., Schumacher, M., Bernhardt, A., Lode, A., Kampschulte, M., Voß, A., Simon, P., Uckermann, O., Kirsche, M., and Gelinsky, M.: Strontium-modification of porous scaffolds from mineralized collagen for potential use in bone defect therapy. Mater. Sci. Eng., C 84, 159 (2018).CrossRefGoogle ScholarPubMed
Bigi, A., Boanini, E., Capuccini, C., and Gazzano, M.: Strontium-substituted hydroxyapatite nanocrystals. Inorg. Chim. Acta 360, 1009 (2007).CrossRefGoogle Scholar
O’Donnell, M.D., Fredholm, Y., de Rouffignac, A., and Hill, R.G.: Structural analysis of a series of strontium-substituted apatites. Acta Biomater. 4, 1455 (2008).CrossRefGoogle ScholarPubMed
Narasaraju, T.S.B. and Phebe, D.E.: Some physico-chemical aspects of hydroxylapatite. J. Mater. Sci. 33, 1 (1996).CrossRefGoogle Scholar
Canalis, E., Hott, M., Deloffre, P., Tsouderos, Y., and Marie, P.J.: The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18, 517 (1996).CrossRefGoogle ScholarPubMed
Chang, C., Tu, C., Chen, T.H., Komuves, L., Oda, Y., Pratt, S.A., Miller, S., and Shoback, D.: Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140, 5883 (1999).CrossRefGoogle ScholarPubMed
Barbara, A., Delannoy, P., Denis, B., and Marie, P.: Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 53, 532 (2004).CrossRefGoogle ScholarPubMed
Braux, J., Velard, F., Guillaume, C., Bouthors, S., Jallot, E., Nedelec, J-M., Laurent-Maquin, D., and Laquerrière, P.: A new insight into the dissociating effect of strontium on bone resorption and formation. Acta Biomater. 7, 2593 (2011).CrossRefGoogle Scholar
Schumacher, M., Lode, A., Helth, A., and Gelinsky, M.: A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro. Acta Biomater. 9, 9547 (2013).CrossRefGoogle ScholarPubMed
O’Sullivan, C., O’Hare, P., O’Leary, N.D., Crean, A.M., Ryan, K., Dobson, A.D.W., and O’Neill, L.: Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process. J. Biomed. Mater. Res., Part B 95B, 141 (2010).CrossRefGoogle Scholar
Yang, F., Yang, D., Tu, J., Zheng, Q., Cai, L., and Wang, L.: Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29, 981 (2011).CrossRefGoogle ScholarPubMed
Gordon, O., Slenters, T.V., Brunetto, P.S., Villaruz, A.E., Sturdevant, D.E., and Otto, M.: Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob. Agents Chemother. 54, 4208 (2010).CrossRefGoogle ScholarPubMed
Gosheger, G., Hardes, J., Ahrens, H., Streitburger, A., Buerger, H., and Erren, M.: Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25, 5547 (2004).CrossRefGoogle Scholar
Langanki, D., Ogle, M.E., Cameron, J.D., Lirtzman, R.A., Schroeder, R.E., and Mirsch, M.W.: Evaluation of a novel bioprosthetic heart valve incorporating anticalcification and antimicrobial technology in a sheep model. J. Heart Valve Dis. 7, 633 (1998).Google Scholar