Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T15:44:55.110Z Has data issue: false hasContentIssue false

Development of microstructure in Tl-2212 thin films and possible influence on microwave surface resistance values

Published online by Cambridge University Press:  01 July 2006

S.C. Speller*
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
H. Wu
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
Z.U. Rek
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, California 94025
J.C. Bilello
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
C.R.M. Grovenor
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The microstructures of Tl2Ba2Ca1Cu2O8 (Tl-2212) films are very strongly influenced by the processing parameters used to synthesize the superconducting phase and also control the microwave surface resistance values that are of key importance in the application of these materials in high-frequency devices. We report here on detailed studies of how the mesotexture of Tl-2212 films develops during synthesis at 820 and 855 °C. Our key observation is that the microstructure, and hence the superconducting properties, are controlled by the mechanism by which stress is relieved in the films and that apparently perfectly epitaxial films do not have the best microwave performance because in these samples the stress is relieved by macroscopic defects rather than local, low-angle grain misorientations.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lauder, A., Wilker, C., Kountz, D.J., Holstein, W.L., Face, D.W.: High performance superconducting thin films on large area substrates. IEEE Trans. Appl. Supercond. 3, 1683 (1993).CrossRefGoogle Scholar
2.Utz, B., Semerad, R., Bauer, M., Prusseit, W., Berberich, P., Kinder, H.: Deposition of YBCO and NBCO films on areas of 9 inches in diameter. IEEE Trans. Appl. Supercond. 7, 1272 (1997).Google Scholar
3.Schneidewind, H., Manzel, M., Bruchlos, G., Kirsch, K.: TlBaCaCuO-2212 thin films on lanthanum aluminate and sapphire substrates for microwave filters. Supercond. Sci. Technol. 14, 200 (2001).CrossRefGoogle Scholar
4.Face, D.W., Wilker, C., Kinston, J.T., Shen, Z-Y., Pellocone, F.M., Small, R.J., McKenna, S.P., Sun, S., Martin, P.J.: Advances in HTS films for high power microwave applications. IEEE Trans. Appl. Supercond. 7, 1283 (1997).CrossRefGoogle Scholar
5.Face, D.W., Pellicone, F.M., Small, R.J., Bao, L., Warrington, M.S., Wilker, C.: Tl2Ba2CaCu2O8 and YBa2Cu3O7 films on large area MgO and sapphire substrates for high power microwave and rf applications. IEEE Trans. Appl. Supercond. 9, 2492 (1999).CrossRefGoogle Scholar
6.Sundaresan, A., Asada, H., Crisan, A., Nie, J.C., Kito, H., Iyo, A., Tanaka, Y., Kusunoki, M., Ohshima, S.: Preparation of Tl-2212 and Tl-1223 superconductor thin films and their microwave surface resistance. IEEE Trans. Appl. Supercond. 13, 2913 (2003).Google Scholar
7.Wu, H., Speller, S.C., Pal, S., Edwards, D.J., Grovenor, C.R.M.: Microstructure control in the growth of large area T1-2212 thin films. IEEE Trans. Appl. Supercond. 13, 2871 (2003).Google Scholar
8.Vorobiev, A.K., Drozdov, Y.N., Gusev, S.A., Mironov, V.L., Vostokov, N.V., Kluenkov, E.B., Gaponov, S.V., Talanov, V.V.: Study of correlation between the microstructure and phase inhomogeneities of Y–Ba–Cu–O epitaxial films and their DC and microwave properties. Supercond. Sci. Technol. 12, 908 (1999).Google Scholar
9.Tian, Y.J., Li, L., Guo, L.P., Liu, J.Z., Zhao, Z.X., Xu, X.P., Lu, H.B., Zhou, Y.L., Chen, Z.H., Cui, D.F., Yang, G.Z.: Correlation between distribution of outgrowths and microwave surface-resistance for YBa2Cu3O7 thin-films. Appl. Phys. Lett. 65, 2356 (1994).Google Scholar
10.Kastner, G., Schafer, C., Senz, St., Kaiser, T., Hein, M.A., Lorenz, M., Hocknuth, H., Hesse, D.: Microstructure and microwave surface resistance of typical YBaCuO thin films on sapphire and LaAlO3. Supercond. Sci. Technol. 12, 366 (1999).CrossRefGoogle Scholar
11.Laderman, S.S., Taber, R.C., Jacowitz, R.D., Moll, J.L., Eom, C.B., Hylton, T.L., Marshall, A.F., Geballe, T.H., Beasley, M.R.: Resistive loss at 10 GHz in c-axis-aligned in situ-grown YBa2Cu3O7 films. Phys. Rev. B 43, 2922 (1991).CrossRefGoogle ScholarPubMed
12.Zaitsev, A.G., Wordenweber, R., Koenigs, T., Hollmann, E.K., Raumov, S.V., Vendik, O.G.: Effect of structural and morphological imperfections on the microwave surface resistance of YBCO thin films. Physica C 264, 125 (1996).CrossRefGoogle Scholar
13.Einfeld, J., Lahl, P.Kutzner, Wordenweber, R., Kastner, G.: Reduction of the microwave surface resistance in YBCO thin films by microscopic defects. Physica C 351, 103 (2001).CrossRefGoogle Scholar
14.Wosik, J., Xie, L-M., Mazierska, J., Grabovickic, R.: Influence of columnar defects on surface resistance of YBa2Cu3Ox superconducting thin films; Nonlinear effects. Appl. Phys. Lett. 75, 1781 (1999).CrossRefGoogle Scholar
15.Bonn, D.A., Kamai, S., Zhang, K., Baar, D.J., Klein, E., Hardy, W.N.: Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95. Phys. Rev. B 50, 4015 (1994).CrossRefGoogle ScholarPubMed
16.Rudman, D.A., Stork, F.J.B., Booth, J.C., Juang, J.Y., Vale, L.R., Beatty, G.J., Williams, C.I., Beall, J.A., Ono, R.H., Qadri, S.B., Osofsky, M.S., Skelton, E.F., Claassen, J.H., Gibson, G., MacManus-Driscoll, J.L., Malde, N., Cohen, L.F.: Role of oxygen pressure during deposition on the microwave properties of YBCO films. IEEE Trans. Appl. Supercond. 9, 2460 (1999).CrossRefGoogle Scholar
17.Booth, J.C., Beall, J.A., Rudman, D.A., Vale, L.R., Ono, R.H., Holloway, C.L., Qadri, S.B., Osofsky, M.S., Skelton, E.F., Claassen, J.H., Gibson, G., MacManus-Driscoll, J.L., Malde, N., Cohen, L.F.: Simultaneous optimization of the linear and nonlinear microwave response of YBCO films and devices. IEEE Trans. Appl. Supercond. 9, 4176 (1999).CrossRefGoogle Scholar
18.Velichko, A.V., Lancaster, M.J., Porch, A.: Nonlinear microwave properties of high T c thin films. Supercond. Sci. Technol. 18, R24 (2005).CrossRefGoogle Scholar
19.Chromik, S., Jergel, M., Gazi, S., Strbik, V., Hanic, F., Falcony, C., Vasko, M., Benacka, S.: Influence of substrate and precursor film composition on morphology and superconducting transition of T1-2212 thin films characterized by microwaves. Physica C 354, 429 (2001).CrossRefGoogle Scholar
20.Bramley, A.P., O'Connor, J.D., Grovenor, C.R.M.: Thallium-based HTS thin films, processing, properties and applications. Supercond. Sci. Technol. 12, R57 (1999).Google Scholar
21.Yan, S.L., Fang, L., Si, M.S., Cao, H.L., Song, Q.X., Yan, J., Zhao, Y.D., Hao, J.M.: The growth and superconducting properties of epitaxial Tl2Ba2CaCu2O8 thin-films. Supercond. Sci. Technol. 7, 681 (1994).CrossRefGoogle Scholar
22.Chrzanowski, J., Meng-Burany, S., Xing, W.B., Curzon, A.E., Irwin, J.C., Heinrich, B., Cragg, R.A., Fortier, N., Habib, F., Angus, V., Anderson, G., Fife, A.A.: Characterization of Tl2Ba2CaCu2O8 films prepared by laser ablation of Ba2CaCu2Ox precursor targets and ex situ thalliation. Supercond. Sci. Technol. 9, 113 (1996).Google Scholar
23.Holstein, W.L., Parisi, L.A., Wilker, C., Flippen, R.B.: Tl2Ba2CaCu2O8 films with very low microwave surface-impedance up to 95 K. Appl. Phys. Lett. 60, 2014 (1992).CrossRefGoogle Scholar
24.Collins, B.T., Ladd, J.A., Matey, J.R.: Preparation of Tl2Ba2CaCu2O8 superconducting thin-films on sapphire substrates via a 2-step chemical-deposition process. J. Appl. Phys. 70, 2458 (1991).CrossRefGoogle Scholar
25.Huber, S., Manzel, M., Bruchlos, H., Hensen, S., Muller, G.: Thallium-based high-T c films with very low surface impedance. Physica C 244, 337 (1995).Google Scholar
26.Hosseinali, G. Samadi, Straif, W., Starchl, B., Kundzins, K., Weber, H.W., Yhan, S.L., Manzel, M., Sangl, E., Proyer, S., Bäuerle, D., Mezzetti, E.: Critical currents in Tl-2212 and Tl-2223 thin films. Physica C 268, 307 (1996).CrossRefGoogle Scholar
27.Krebs, H.U., Krauns, C., Yang, X., Geyer, U.: Island growth and surface-topography of epitaxial Y–Ba–Cu–O thin-films on MgO. Appl. Phys. Lett. 59, 2180 (1991).CrossRefGoogle Scholar
28.Raistrick, I.D., Hawley, M., Beery, J.G., Garzon, F.H., Houlton, R.J.: Microstructure and growth-mechanism of thin sputtered films of YBa2Cu3O7 on MgO substrates. Appl. Phys. Lett. 59, 3177 (1991).Google Scholar
29.O'Connor, J.D., Jenkins, A.P., Grovenor, C.R.M., Goringe, M.J., Dew-Hughes, D.: The microstructure and electrical properties of Tl2Ba2Ca1Cu2Ox thin films processed at low temperatures. Supercond. Sci. Technol. 11, 207 (1998).Google Scholar
30.Bramley, A.P., Grovenor, C.R.M., Goringe, M.J., O'Connor, J.D., Jenkins, A.P., Dew-Hughes, D., Reschauer, N., Brozio, W., Wagner, H.H., Spreitzer, U., Renk, K.F.: Film/substrate interactions and superconducting properties of Tl(Ba1−xSrx )(2)Ca2Cu3Oy thin films on (001) SrTiO3 and SrTiO3-buffered (001) MgO substrates. J. Mater. Res. 13, 2057 (1998).CrossRefGoogle Scholar
31.O'Connor, J.D., Dew-Hughes, D., Bramley, A.P., Grovenor, C.R.M., Goringe, M.J., Morley, S.M.: Low-temperature processing of superconducting Tl2Ba2Ca1Cu2Ox films on CeO2 buffered sapphire. Appl. Phys. Lett. 69, 115 (1996).CrossRefGoogle Scholar
32.Siegal, M.P., Venturini, E.L., Morosin, B., Aselage, T.L.: Synthesis and properties of Tl–Ba–Ca–Cu–O superconductors. J. Mater. Res. 12, 2825 (1997).CrossRefGoogle Scholar
33.Aselage, T.L., Venturini, E.L., Van Deusen, S.B.: 2-zone equilibria of Tl–Ca–Ba–Cu–O superconductors. J. Appl. Phys. 75, 1023 (1994).Google Scholar
34.Ginley, D.S., Kwak, J.K., Venturini, E.L., Morosin, B., Baughman, R.J.: Morphology control and high critical currents in superconducting thin-films in the Tl–Ca–Ba–Cu–O system. Physica C 160, 42 (1989).CrossRefGoogle Scholar
35.Details of how to extract this data can be found in X-ray Diffraction A Practical Approach, Suryanarayana, C. and Norton, M. Grant (Plenum Press, New York and London, 1998).Google Scholar
36.Jenkins, A.P., Dew-Hughes, D., Edwards, D.J., Hyland, D., Grovenor, C.R.M.: Application of TBCCO based HTS devices to digital cellular communications. IEEE Trans. Appl. Supercond. 9, 2849 (1998).CrossRefGoogle Scholar
37.Schneidewind, H., Stelzner, T.: Optimization of surface morphology and electrical parameters of Tl–Ba–Ca–Cu–O thin films for high frequency devices. IEEE Trans. Appl. Supercond. 13, 2762 (2003).CrossRefGoogle Scholar
38.Subramanian, M.A., Calabrese, J.C., Torardi, C.C., Gopalakrishnan, J., Askew, T.R., Flippen, R.B., Morrissey, K.J., Chowdry, U., Sleight, A.W.: Crystal-structure of the high-temperature superconductor Tl2Ba2CaCu2O8. Nature 322, 420 (1988).Google Scholar
39.Shimakawa, Y., Kubo, Y., Manako, T., Igarishi, H.: Variation in T c and carrier concentration in Tl-based superconductors. Phys. Rev. B 40, 11400 (1989).CrossRefGoogle ScholarPubMed
40.Doerner, M.F., Nix, W.D.: Stresses and deformation processes in thin films on substrates. CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).Google Scholar