Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T05:49:20.210Z Has data issue: false hasContentIssue false

Determination of Young's modulus by spherical indentation

Published online by Cambridge University Press:  31 January 2011

N. Huber
Affiliation:
Forschungszentrum Karlsruhe, Technik und Umwelt, Institut für Materialforschung II, Postfach 3640, D-76021 Karlsruhe, Germany
D. Munz
Affiliation:
Forschungszentrum Karlsruhe, Technik und Umwelt, Institut für Materialforschung II, Postfach 3640, D-76021 Karlsruhe, Germany
Ch. Tsakmakis
Affiliation:
Forschungszentrum Karlsruhe, Technik und Umwelt, Institut für Materialforschung II, Postfach 3640, D-76021 Karlsruhe, Germany
Get access

Abstract

In this paper we consider elastic plastic materials that are tested by spherical indentation. Finite element calculations, which take into account nonlinear geometry properties, are carried out in order to determine the influence of the plastic history on the unloading response of the material. Two different iterative methods are proposed for determining Young's modulus under the assumption of a bilinear plasticity law. The first method deals with loading and unloading parts of the indentation test, whereas the second one deals only with unloading parts of the indentation test.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601609 (1986).CrossRefGoogle Scholar
2.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
3.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951), Chap. V.Google Scholar
4.Atkins, A. G. and Tabor, D., J. Mech. Phys. Solids 13, 149164 (1965).CrossRefGoogle Scholar
5.Pharr, G. M., Oliver, W. C., and Brotzen, F. R., J. Mater. Res. 7, 613617 (1992).CrossRefGoogle Scholar
6.Field, J. S. and Swain, M. V., J. Mater. Res. 8, 297306 (1993).CrossRefGoogle Scholar
7.Harding, J. W. and Sneddon, I. N., Proc. Camb. Philos. Soc. 43, 1626 (1945).CrossRefGoogle Scholar
8.Johnson, K. L., Contact Mechanics (Cambridge University Press, 1985), pp. 9093.CrossRefGoogle Scholar
9. CSIRO, UMIS 2000 Operating Manual (Division of Applied Physics, Australia, 1993), p. 65.Google Scholar