Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T12:56:52.078Z Has data issue: false hasContentIssue false

Determination of grain boundary geometry using TEM

Published online by Cambridge University Press:  31 January 2011

H. Jang*
Affiliation:
Department of Materials Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0237
D. Farkas
Affiliation:
Department of Materials Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0237
J.T.M. De Hosson
Affiliation:
Department of Applied Physics, University of Groningen, Nijenborgh 18, 9747 AG, Groningen, The Netherlands
*
a)Current address: Department of Materials Science and Engineering, Technological Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3180.
Get access

Abstract

An experimental method to obtain the grain boundary geometry using the transmission electron microscope is presented. The method allows Σ determination including grain boundary plane orientation. In order to determine the specialness of the grain boundary, three different criteria for maximum allowable deviations from exact CSL misorientations were examined. We tested these three criteria from a statistical distribution of grain boundary types in terms of Σ. We compared grain boundary distributions from other studies in Ni3Al and found discrepancies among them. It seems that the discrepancy came from the different criteria for special boundaries in Σ determination and different experimental procedures they used. The statistical distribution of grain boundary plane orientations showed that low Σ boundaries (Σ < 11) were oriented to the plane of high density of coincident sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.McLean, D., Grain Boundaries in Metals (Clarendon Press, Oxford, 1957).Google Scholar
2.Li, J. C. M., J. Appl. Phys. 32, 525 (1961).CrossRefGoogle Scholar
3.Aust, K. T., in Recovery and Recrystallization of Metals, edited by Himmel, L. (Interscience Publishers, New York, 1962), p. 131.Google Scholar
4.Brandon, D. G., Ralph, B., Ranganathan, S., and Wald, M. S., Acta Metall. 12, 813 (1964).CrossRefGoogle Scholar
5.Brandon, D. G., Acta Metall. 14, 1479 (1966).CrossRefGoogle Scholar
6.Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin, 1970).CrossRefGoogle Scholar
7.Bollmann, W., J. Microsc. 102, 233 (1974).CrossRefGoogle Scholar
8.Gleiter, H., Phys. Status Solidi (b) 45, 9 (1971).CrossRefGoogle Scholar
9.Pumphrey, P. H., Scripta Metall. 6, 107 (1972).CrossRefGoogle Scholar
10.Ralph, B., J. de Physique, C4, No. 1036, C471 (1975).Google Scholar
11.Brokman, A. and Balluffi, R. W., Acta Metall. 29, 1703 (1981).CrossRefGoogle Scholar
12.Grimmer, H., Bollmann, W., and Warrington, D. H., Acta Cryst. A30, 197 (1974).CrossRefGoogle Scholar
13.Warrington, D. H., Grain Boundary Structure and Kinetics, ASM Seminar (1980), p. 1.Google Scholar
14.Pond, R. C. and Vitek, V., Proc. R. Soc. Lond. B 357, 453 (1977).Google Scholar
15.Pond, R. C., Proc. R. Soc. Lond. B 357, 471 (1977).Google Scholar
16.Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
17.Chen, S. P., Srolovitz, D. J., and Voter, A. F., J. Mater. Res. 4, 62 (1989).CrossRefGoogle Scholar
18.De Hosson, J. Th. M., Pestman, B. J., Schapink, F. W., and Tichelaar, F. D., in Interfacial Structure, Properties, and Design, edited by Yoo, M. H., Clark, W. A. T., and Briant, C. L. (Mater. Res. Soc. Symp. Proc. 122, Pittsburgh, PA, 1988), p. 145.Google Scholar
19.Farkas, D. and Jang, H., Phys. Rev. B, No. 16, 11769 (1989).CrossRefGoogle Scholar
20.Sutton, A. P. and Balluffi, R. W., Acta Metall. 35, No. 9, 2177 (1987).CrossRefGoogle Scholar
21.Farkas, D., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 137.Google Scholar
22.Wyckoff, R., The Analytical Expression of the Results of the Theory of Space Groups (Carnegie Institution, Washington, DC, 1930).Google Scholar
23.Gleiter, H. and Chalmers, B., Prog. Mater. Sci. (B), 16 (1972).Google Scholar
24.Dechamps, M., Baribier, F., and Marrouche, A., Acta Metall. 35, No. 1, 101 (1987).CrossRefGoogle Scholar
25.Merkle, K. L., Colloque De Physique Cl, 51, Cl251 (1990).Google Scholar
26.Seidman, D. N., in Characterization of the Structure and Chemistry of Defects in Materials, edited by Larson, B. C., Riihle, M., and Seidman, D. N. (Mater. Res. Soc. Symp. Proc., 138, Pittsburgh, PA, 1989), p. 315.Google Scholar
27.Young, C. T., Steeles, J. H., and Lytton, J. L., Metall. Trans. 4, 2081 (1973).CrossRefGoogle Scholar
28.Goux, C., Bull, cercle Etudes Metaux 8, 185 (1961).Google Scholar
29.Randal, V. and Ralph, B., J. Mater. Sci. 21, 3823 (1986).CrossRefGoogle Scholar
30.Kelly, P. M., Jostons, A., Blake, R. G., and Napier, J. G., Phys. Status Solidi (a) 31, 771 (1975).CrossRefGoogle Scholar
31.Long, N. J., Loretto, M. H., and Smallman, R. E., Proc. 7th European Congress on Electron Microscopy 1, 152 (1980).Google Scholar
32.von Heimendahl, M., Bell, W., and Thomas, G., J. Appl. Phys. 35, 3614 (1964).CrossRefGoogle Scholar
33.Thomas, G. and Goringe, M. J., Transmission Electron Microscopy of Materials (John Wiley & Sons, New York, 1979).Google Scholar
34.Lange, F. F., Acta Metall. 15, 311 (1967).CrossRefGoogle Scholar
35.Warrington, D. H. and Bufalini, P., Scripta Metall. 5, 771 (1971).CrossRefGoogle Scholar
36.Bleris, G. L., Antonopoulous, J. G., Karakatos, T. H., and Delvavignette, P., Phys. Status Solidi 67, 249 (1981).CrossRefGoogle Scholar
37.Edington, J. W., Interpretation of Transmission Electron Micrograph in Practical Electron Microscopy in Materials Science (Macmillan, New York, 1975), Vol. 3.Google Scholar
38.Loretto, M. H., Electron Beam Analysis of Materials (Chapman and Hall, London, 1984).CrossRefGoogle Scholar
39.Gervers, R., Phys. Status Solidi 4, 383 (1964).CrossRefGoogle Scholar
40.Shvindlerman, L. S. and Straumal, B. B., Acta Metall. 33, No. 9, 1735 (1985).CrossRefGoogle Scholar
41.Read, W. T. and Shockley, W., Phys. Rev. 78, 275 (1950).CrossRefGoogle Scholar
42.Bishop, G. and Chalmers, B., Scripta Metall. 2, 133 (1968).CrossRefGoogle Scholar
43.Kokawa, H., Watanabe, T., and Karashima, S., Philos. Mag. (A) 44, 1239 (1981).CrossRefGoogle Scholar
44.Warrington, D. H. and Grimmer, H., Philos. Mag. 30, 461 (1974).CrossRefGoogle Scholar
45.Ishida, Y. and Mclean, M., Philos. Mag. 27, 1125 (1973).CrossRefGoogle Scholar
46.Ichinose, H. and Ishida, Y., J. Phys. C4, 39 (1985).Google Scholar
47.Jang, H., Ph.D. Thesis, Virginia Polytechnic Institute and State University (1990).Google Scholar
48.High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985).Google Scholar
49.High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., and Liu, C. T. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987).Google Scholar
50.High-Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989).Google Scholar
51.Interfacial Structure, Properties, and Design, edited by Yoo, M. H., Clark, W. A. T., and Briant, C. L. (Mater. Res. Soc. Symp. Proc. 122, Pittsburgh, PA, 1988).Google Scholar
52.Farkas, D., Jang, H., Lewus, M. O., Versaci, R., and Savino, E. J., in Interfacial Structure, Properties, and Design, edited by Yoo, M. H., Clark, W. A. T., and Briant, C.L. (Mater. Res. Soc. Symp. Proc. 122, Pittsburgh, PA, 1988), p. 455.Google Scholar
53.Watanabe, T., Res Mechnica 11, 47 (1984).Google Scholar
54.Hanada, S., Ogura, T., Watanabe, S., Izumi, O., and Masumoto, T., Acta Metall. 34, No. 1, 13 (1986).CrossRefGoogle Scholar
55.Mackenzie, R. A. D., Vaudin, M. D., and Sass, S. L., in Interfacial Structure, Properties, and Design, edited by Yoo, M. H., Clark, W. A. T., and Briant, C. L. (Mater. Res. Soc. Symp. Proc. 122, Pittsburgh, PA, 1988), p. 461.Google Scholar
56.Farkas, D., Lewis, M. O., and Rangarajan, V., Scripta Metall. 22, 1195 (1988).CrossRefGoogle Scholar
57.Lin, H. and Pope, D. P., in Alloy Phase Stability and Design, edited by Stocks, G. M., Pope, D. P., and Giamei, A. F. (Mater. Res. Soc. Symp. Proc. 186, Pittsburgh, PA, 1991).Google Scholar
58.Karakostas, Th., Nouet, G., Bleris, G. L., Hagege, S., and Delavignette, P., Phys. Status Solidi (a) 50, 703 (1978).CrossRefGoogle Scholar
59.Randle, V. and Ralph, B., Inst. Phys. Conf. Ser., No. 78, Ch. 2, 59 (1985).Google Scholar
60.Watanabe, T., in Interfacial Structure, Properties, and Design, edited by Yoo, M. H., Clark, W. A. T., and Briant, C. L. (Mater. Res. Soc. Symp. Proc. 122, Pittsburgh, PA, 1988), p. 443.Google Scholar
61.Wyrzykowski, J. W. and Grabski, M. W., Philos. Mag. A 53, 505 (1986).CrossRefGoogle Scholar
62.Randle, V., Ralph, B., and Dingley, D., Acta Metall. 36, 267 (1988).CrossRefGoogle Scholar