Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T16:56:11.803Z Has data issue: false hasContentIssue false

Determination of elastic modulus of thin layers using nanoindentation

Published online by Cambridge University Press:  31 January 2011

J. Menčík
Affiliation:
Forschungszentrum Karlsruhe, Institute of Materials Research, D-76021 Karlsruhe, Germany
D. Munz
Affiliation:
Forschungszentrum Karlsruhe, Institute of Materials Research, D-76021 Karlsruhe, Germany
E. Quandt
Affiliation:
Forschungszentrum Karlsruhe, Institute of Materials Research, D-76021 Karlsruhe, Germany
E. R. Weppelmann
Affiliation:
Forschungszentrum Karlsruhe, Institute of Materials Research, D-76021 Karlsruhe, Germany
M. V. Swain
Affiliation:
CSIRO Division of Applied Physics, Lindfield, New South Wales, 2070, Australia
Get access

Abstract

Elastic modulus of thin homogeneous films can be determined by indenting the specimen to various depths and extrapolating the measured (apparent) E-values to zero penetration. The paper shows the application of five approximation functions for this purpose: linear, exponential, reciprocal exponential, Gao's, and the Doerner and Nix functions. Comparison of the results for 26 film/substrate combinations has shown that the indentation response of film/substrate composites can, in general, be described by the Gao analytical function. In determining the thin film modulus from experimental data, satisfactory results can also be obtained with the exponential function, while linear function may be used only for thick films where the relative depths of penetration are small. The article explains the pertinent procedures and gives practical recommendations for the testing.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nix, W. D., Metall. Trans. 20A, 22172245 (1989).CrossRefGoogle Scholar
2.Schweitz, J. A., MRS Bulletin 17, 3345 (1992).CrossRefGoogle Scholar
3.Pharr, G. M. and Oliver, W. C., MRS Bulletin 17, 2833 (1992).CrossRefGoogle Scholar
4.Menčík, J., Mechanics of Components with Treated or Coated Surfaces (Kluwer Academic Publishers, Dordrecht, 1996).CrossRefGoogle Scholar
5.Field, J. S. and Swain, M. V., J. Mater. Res. 8, 297306 (1993).CrossRefGoogle Scholar
6.Menčík, J. and Swain, M. V., Materials Forum 18, 277288 (1994).Google Scholar
7.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601609 (1986).CrossRefGoogle Scholar
8.Gao, H., Chiu, C. H., and Lee, J., Int. J. Solids Structures 29, 24712492 (1992).Google Scholar
9.Swain, M. V. and Weppelmann, E., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E., Jr., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), pp. 177182.Google Scholar
10.King, R. B., Int. J. Solids Structures 23, 16571664 (1987).CrossRefGoogle Scholar
11.Sneddon, I. N., Fourier Transforms (McGraw-Hill, New York, 1951), pp. 450462.Google Scholar
12.Schall, G., Numerische Analyse von Mikroeindruckversuchen mit kugelförmigen Prüfkörpern in dünne Keramikschichten auf Stahl mittels der Finiten Elemente (Diploma Thesis, University of Karlsruhe, 1994).Google Scholar
13.Menčík, J., Quandt, E., and Munz, D., Thin Solid Films 287, 208213 (1996).CrossRefGoogle Scholar
14.Quandt, E., J. Alloys Comp. (1997, in press).Google Scholar
15.Weppelmann, E., Experimentelle Untersuchungen zum Verhalten von Randschichten keramischer Werkstoffe und Schichtsystemen unter mechanischer Beanspruchung durch Eindruckversuche. (Ph.D. Thesis, University of Karlsruhe, 1996).Google Scholar
16.Holleck, H. and Schier, V., Surf. Coat. Technol. 76–77, 328336 (1995).CrossRefGoogle Scholar