Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T04:26:04.573Z Has data issue: false hasContentIssue false

Deposition of fine silicon carbide relics by electrostatic atomization of a polymeric precursor

Published online by Cambridge University Press:  31 January 2011

D. A. Grigoriev
Affiliation:
Department of Materials, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
M. J. Edirisinghe*
Affiliation:
Department of Materials, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
X. Bao
Affiliation:
Department of Materials, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
*
b) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A solution of a polymeric precursor for silicon carbide (SiC) was subjected to electrostatic atomization in the cone-jet mode to spray droplets on a zirconia substrate. The resulting deposit was heated to 1300 °C to obtain SiC relics. Precursor and ceramic relics were characterized by microscopy. The size distribution of the droplet relics was studied at several flow rates of the solution to the electrostatic atomization chamber. The results show that by controlling the flow rate SiC relics approximately 5 μm in diameter can be produced.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Xu, B., Arias, F., and Whitesides, G.M., Adv. Mater. 11, 492 (1999).3.0.CO;2-I>CrossRefGoogle Scholar
2.Tay, B.Y. and Edirisinghe, M.J., J. Mater. Res. 16, 373 (2001).CrossRefGoogle Scholar
3. G.I.Taylor, Proc. R. Soc. London A280, 383 (1964).Google Scholar
4.Cloupeau, M. and Prunet, B.-Foch, J. Aerosol. Sci. 25, 1021 (1994).CrossRefGoogle Scholar
5.Chen, C.H., Emond, M.H.J., Kelder, E.M., and Schoonman, J., J. Aerosol. Sci. 30, 959 (1999).CrossRefGoogle Scholar
6.Lenngoro, I.W., Okuyama, K., Mora, J. Fernandez de la, and Tohge, N., J. Aerosol. Sci. 31, 121 (1999).CrossRefGoogle Scholar
7.Teng, W.D., Huneiti, Z.A., Machowski, Z., Evans, J.R.G., Edirisinghe, M.J., and Balachandran, W., J. Mater. Sci. Lett. 16, 1017 (1997).CrossRefGoogle Scholar
8.Weinmann, M., Schuhmacher, J., and Aldinger, F., Chem. Mater. 12, 623 (2000).CrossRefGoogle Scholar
9.Bao, X., Edirisinghe, M.J., Fernando, G.F., and Folkes, M.J., Brit. Ceram. Trans. 97, 253 (1998).Google Scholar
10.Bao, X. and Edirisinghe, M.J., Composites A30, 601 (1999).CrossRefGoogle Scholar
11.Bao, X., Nangrejo, M.R., and Edirisinghe, M.J., J. Mater. Sci. 35, 4365 (2000).CrossRefGoogle Scholar
12.Nangrejo, M.R., Bao, X., and Edirisinghe, M.J., J. Eur. Ceram. Soc. 20, 1777 (2000).CrossRefGoogle Scholar
13.Loh, P.P., Bao, X., Nangrejo, M.R., and Edirisinghe, M.J., J. Mater. Sci. Lett. 19, 587 (2000).CrossRefGoogle Scholar
14.Schiavuta, P., Cepek, C., Sancrotti, M., Pedio, M., Berti, M., Salvador, D. De, and Drigo, A.V., Surface Science 454–456, 827 (2000).CrossRefGoogle Scholar
15.Yakimova, R. and Janzen, E., Diamond Relat. Mater. 9, 432 (2000).CrossRefGoogle Scholar
16.Bao, X., Edirisinghe, M.J., Fernando, G.F., and Folkes, M.J., J. Eur. Ceram. Soc. 18, 915 (1998).CrossRefGoogle Scholar
17.Harpur, I.G., Bailey, A.G., and Hashish, A.D., J. Aerosol. Sci. 27, 987 (1996).CrossRefGoogle Scholar
18.Teng, W.D. and Edirisinghe, M.J., Key Eng. Mater. 132–136, 337 (1997).CrossRefGoogle Scholar
19.Alguero, M., Guiu, F., and Reece, M.J., J. Eur. Ceram. Soc. 20, 2705 (2000).CrossRefGoogle Scholar
20.Grigoriev, D., Edirisinghe, M.J., Bao, X., Evans, J.R.G., and Luklinska, Z., Philos. Mag. Lett. 81, 285 (2001).CrossRefGoogle Scholar
21.Wesson, J.P. and Williams, T.C., J. Poly. Sci. Polym. Chem. 17, 2833 (1979).CrossRefGoogle Scholar
22.Wesson, J.P. and Williams, T.C., J. Poly. Sci. Polym. Chem. 18, 959 (1980).CrossRefGoogle Scholar
23.Wesson, J.P. and Williams, T.C., J. Poly. Sci. Polym. Chem. 19, 65 (1981).CrossRefGoogle Scholar
24.Hurwitz, F.I., Kacik, T.A., Bu, X-Y., Masnovi, J., Heimann, P.J., and Beyene, K., J. Mater. Sci. 30, 3130 (1995).CrossRefGoogle Scholar
25.Carlsson, D.J., Cooney, J.D., Gauthier, S., and Worsfold, D.J., J. Am. Ceram. Soc. 73, 237 (1990).CrossRefGoogle Scholar
26.Bao, X. and Edirisinghe, M.J., J. Mater. Sci. Lett. 17, 1641 (1998).CrossRefGoogle Scholar
27.Czubarow, P., Sugimoto, T., and Seyferth, D., Macromolecules 31, 229 (1998).CrossRefGoogle Scholar
28.Tang, K. and Gomez, A., J. Colloid Interface Sci. 184, 500 (1996).CrossRefGoogle Scholar
29.Hartman, R.P.A., Borra, J-P., Brunner, D.J., J.C.M. Marijnissen, and B. Scarlett, J. Electrostat. 47, 143 (1999).CrossRefGoogle Scholar
30.Ganan-Calvo, A.M., Davila, J., and Barrero, A., J. Aerosol. Sci. 28, 249 (1997).CrossRefGoogle Scholar
31.Hartman, R.P.A., Brunner, D.J., Camelot, D.M.A., Marijnissen, J.C.M., and Scarlett, B., J. Aerosol. Sci. 31, 65 (2000).CrossRefGoogle Scholar