Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:35:07.310Z Has data issue: false hasContentIssue false

Density functional theory calculations, growth, structure, and optical properties of birefringent LiNaV2O6

Published online by Cambridge University Press:  12 February 2016

Qingrong Kong
Affiliation:
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China; and Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Yun Yang*
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Lili Liu
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Qiang Bian
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Bing-Hua Lei
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Linping Li
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Zhihua Yang
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Zhi Su*
Affiliation:
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
Shilie Pan*
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
*
a) Address all correspondence to these authors. e-mail: [email protected], [email protected], [email protected]
a) Address all correspondence to these authors. e-mail: [email protected], [email protected], [email protected]
a) Address all correspondence to these authors. e-mail: [email protected], [email protected], [email protected]
Get access

Abstract

A congruent melting compound LiNaV2O6 has been synthesized by high-temperature solution reaction and it has been grown with sizes up to 11 × 6 × 2 mm3 by the top-seeded growth method for the first time. LiNaV2O6 crystallizes in the monoclinic system with space group C2/c, with a = 10.184(2) Å, b = 9.067(2) Å, c = 5.8324(11) Å, β = 108.965(14)°. UV–Vis–NIR diffuse reflectance spectrum of LiNaV2O6 shows that it has a wide transmittance range from 385 to 2500 nm. The ab initio calculations show that the birefringence of LiNaV2O6 is 0.136 at 589.3 nm. Therefore, LiNaV2O6 may be a new birefringent material. Based on the analysis of the relationship between crystal structure and linear optical properties, it is found that the large birefringence is attributed to the particular arrangement of V–O anionic groups.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chartier, G.: Introduction to Optics (Springer Science + Business Media, Inc., 1955).Google Scholar
Li, X.Z., Wang, C., Chen, X.L., Li, H., Jia, L.S., Wu, L., Du, Y.X., and Xu, Y.P.: Syntheses, thermal stability, and structure determination of the novel isostructural RBa3B9O18 (R = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb). Inorg. Chem. 43, 8555 (2004).CrossRefGoogle Scholar
Nomura, H. and Furutono, Y.: Polarimetry of illumination for 193 nm immersion lithography. Microelectron. Eng. 85, 1671 (2008).Google Scholar
Aoki, K., Miyazaki, H.T., Hirayama, H., Inoshita, K., Baba, T., Sakoda, K., Shinya, N., and Aoyagi, Y.: Microassembly of semiconductor three-dimensional photonic crystals. Nat. Mater. 2, 117 (2003).Google Scholar
Lancry, M., Desmarchelier, R., Cook, K., Poumellec, B., and Canning, J.: Birefringent waveplates photo-induced in silica by femtosecond laser. Micromachines 5, 825 (2014).Google Scholar
Li, R.K.: On the calculation of refractive indices of borate crystals based on group approximation. Z. Kristallogr. 228, 526 (2013).Google Scholar
Levy, M.L., Jalali, A.A., and Huang, X.Y.: Magnetophotonic crystals: Nonreciprocity, birefringence and confinement. J. Mater. Sci. 20, 43 (2009).Google Scholar
Zhang, H., Zhang, M., Pan, S.L., Yang, Z.H., Wang, Z., Bian, Q., Hou, X.L., Yu, H.W., Zhang, F.F., Wu, K., Feng, Y., Peng, Q.J., Xu, Z.Y., Chang, K.B., and Poeppelmeier, K.R.: Na3Ba2(B3O6)2F: Next generation of deep-ultraviolet birefringent materials. Cryst. Growth Des. 15, 523 (2015).Google Scholar
Ghosh, G.: Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163, 95 (1999).Google Scholar
Luo, H.T., Tkaczyka, T., Sampsonb, R., and Dereniaka, E.L.: Birefringence of yttrium vanadate single crystals in the middle wavelength infrared. Proc. SPIE 6119, 61190J1 (2006).Google Scholar
Zhou, G.Q., Xu, J., Chen, X.D., Zhong, H.Y., Wang, S.T., Xu, K., Deng, P.Z., and Gan, F.X.: Growth and spectrum of a novel birefringent α-BaB2O4 crystal. Cryst. Growth Des. 191, 517 (1998).Google Scholar
Appel, R., Dyer, C.D., and Lockwood, J.N.: Design of a broadband UV-visible alpha-barium borate polarizer. Appl. Opt. 41, 2470 (2002).Google Scholar
Cyranoski, D.: Materials science: China's crystal cache. Nature 457, 953 (2009).CrossRefGoogle ScholarPubMed
Bian, Q., Yang, Z.H., Pan, S.L., Zhang, H., Wu, H.P., Yu, H.W., Zhao, W.W., and Jing, Q.: First principle assisted prediction of the birefringence values of functional inorganic borate materials. J. Phys. Chem. C 118, 25651 (2014).Google Scholar
Qin, F.L. and Li, R.K.: Predicting refractive indices of the borate optical crystals. Cryst. Growth Des. 318, 642 (2011).Google Scholar
Kang, L., Luo, S.Y., Huang, H.W., Ye, N., Lin, Z.S., Qin, J.G., and Chen, C.T.: Prospects for fluoride carbonate nonlinear optical crystals in the UV and deep-UV regions. J. Phys. Chem. C. 117, 25684 (2013).Google Scholar
Luo, M., Ye, N., Zou, G.H., Lin, C.S., and Cheng, W.D.: Na8Lu2(CO3)6F2 and Na3Lu(CO3)2F2: Rare earth fluoride carbonates as deep-UV nonlinear optical materials. Chem. Mater. 25, 3147 (2013).Google Scholar
SAINT, Version 7.60A (Bruker analytical X-ray instruments. Inc., Madison, WI, 2008).Google Scholar
Sheldrick, G.M.: SHELXTL, Version 6.14 (Bruker Analytical X-ray Instruments. Inc., Madison, WI, 2003).Google Scholar
APEX 2, v2008.6-RC3, SADABS, Version 2008/1 (Bruker Analytical X-ray Systems, Inc., Madison, 2008).Google Scholar
Spek, A.L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7 (2003).Google Scholar
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Lin, J.S., Qteish, A., Payne, M.C., and Heine, V.: Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B 47, 4174 (1993).Google Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).Google Scholar
Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).Google Scholar
Chen, T., Wang, G.L., Wang, X.Y., and Xu, Z.Y.: Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications. Appl. Phys. B 97, 9 (2009).Google Scholar
Bubnova, R.S., Filatov, S.K., Grunin, V.S., and Zonn, Z.N.: The crystal structure of a new clinopyroxene LiNaV2O6 . Z. Kristallogr. 25, 1287 (1980).Google Scholar
Chen, Z.H., Pan, S.L., Wu, H.P., Yang, Y., and Fan, X.Y.: New bidentate non-centrosymmetric borate–malate: Synthesis, structure and characterization of RbB(DL-C4H4O5)2·H2O. Mater. Chem. Phys. 129, 649 (2011).Google Scholar
Yang, Y., Pan, S.L., Su, X., Wang, Y., Yang, Z.H., Han, J., Zhang, M., and Chen, Z.H.: Crystal growth and calculation of the electronic band structure, density of states of Li3Cs2B5O10 . CrystEngComm 16, 1978 (2014).CrossRefGoogle Scholar
Li, H.Y., Pan, S.L., Wu, H.P., and Yang, Z.H.: Growth, structure and properties of the non-centrosymmetric hydrated borate CaN2B8O26H32 . Mater. Chem. Phys. 129, 176 (2011).Google Scholar
Sykora, R.E., Ok, K.M., Halasyamani, P.S. and Wells, D.M., and Albrecht-Schmitt, T.E.: New one-dimensional vanadyl iodates: Hydrothermal preparation, structures, and NLO properties of A[VO2(IO3)2] (A = K, Rb) and A[(VO)2(IO3)3O2] (A = NH4, Rb, Cs). Chem. Mater. 14, 2741 (2002).Google Scholar
Shan, Y. and Huang, S.D.: A potassium sodium double salt of metavanadate, KNa(VO3)2 . Acta. Crystallogr. C 55, 1048 (1999).Google Scholar
DeVore, J.R.: Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41, 416 (1951).CrossRefGoogle Scholar
Zelmon, D.E., Small, D.L., and Jundt, D.: Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B 14, 3319 (1997).Google Scholar
Sivakumar, T., Chang, H.Y., and Halasyamani, P.S.: Synthesis, structure, and characterization of a new two-dimensional lead(II) vanadate, Ba3PbV4O14 . Solid State Sci. 9, 370 (2007).Google Scholar
Yeon, J., Kim, S., and Halasyamani, P.S.: A3V5O14 (A = K+, Rb+, or Tl+), new polar oxides with a tetragonal tungsten bronze related structural topology: Synthesis, structure, and functional properties. Inorg. Chem. 49, 6986 (2010).Google Scholar
Kang, J., Yang, Y., Pan, S.L., Yu, H.W., and Zhou, Z.X.: Synthesis, crystal structure and optical properties of Ba5V3O12F. J. Mol. Struct. 1056, 79 (2014).CrossRefGoogle Scholar
Sivakumar, T., Chang, H.Y., Baek, J., and Halasyamani, P.S.: Two new noncentrosymmetric polar oxides: Synthesis, characterization, second-harmonic generating, and pyroelectric measurements on TlSeVO5 and TlTeVO5 . Chem. Mater. 19, 4710 (2007).Google Scholar
Yeon, J., Sefat, A.S., Tran, T.T., Halasyamani, P.S., and Zur Loye, H-C.: Crystal growth, structure, polarization, and magnetic properties of cesium vanadate, Cs2V3O8: A structure–property study. Inorg. Chem. 52, 6179 (2013).Google Scholar
Supplementary material: File

Kong supplementary material

Kong supplementary material 1

Download Kong supplementary material(File)
File 1.7 MB