Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T09:10:19.222Z Has data issue: false hasContentIssue false

Densification process in undoped zinc oxide

Published online by Cambridge University Press:  31 January 2011

K. Kobayashi
Affiliation:
Laboratoire de Chimie du Solide du CNRS, 351, cours de la Libération, 33405 Talence Cedex, France
P. Dordor
Affiliation:
Laboratoire de Chimie du Solide du CNRS, 351, cours de la Libération, 33405 Talence Cedex, France
J. P. Bonnet
Affiliation:
Laboratoire de Chimie du Solide du CNRS, 351, cours de la Libération, 33405 Talence Cedex, France
R. Salmon
Affiliation:
Laboratoire de Chimie du Solide du CNRS, 351, cours de la Libération, 33405 Talence Cedex, France
P. Hagenmuller
Affiliation:
Laboratoire de Chimie du Solide du CNRS, 351, cours de la Libération, 33405 Talence Cedex, France
Get access

Abstract

An original preparation of ZnO is described where the powder is obtained by precipitaton from zinc nitrate in aqueous solution followed by a calcination. Scanning electron microscopy reveals a close relation between the initial density and the morphology of the powder, the latter being also strongly dependent on the calcining conditions. The investigation of the densification process shows the extreme sensitivity of the final density to sintering conditions. A physical model based on the competitive influences of shrinkage and evaporation successfully describes the observed phenomena.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lee, V. J. and Parravano, G., J. Appl. Phys. 30, 1735 (1959).CrossRefGoogle Scholar
2Norris, L. F. and Parravano, G., J. Am. Ceram. Soc. 46, 449 (1963).CrossRefGoogle Scholar
3Nicholson, G. C., J. Am. Ceram. Soc. 48, 214 (1965).CrossRefGoogle Scholar
4Gupta, T. K. and Coble, R. L., J. Am. Ceram. Soc. 51, 521 (1968).CrossRefGoogle Scholar
5Moriyoshi, Y. and Komatsu, W., J. Am. Ceram. Soc. 53, 671 (1970).CrossRefGoogle Scholar
6Dollimore, D. and Spooner, P., Trans. Faraday Soc. 67, 2750 (1971).CrossRefGoogle Scholar
7Trontelj, M. and Kojar, D., J. Mater. Sci. Lett. 13, 1832 (1978).Google Scholar
8Moriyoshi, Y., in the Proceedings of the International Symposium on Factors Densification and Sintering of Oxide and Nonoxide Ceramics, Hakon, Japan, 1978, pp. 228237.Google Scholar
9Whittemore, O. J. and Varela, J. A., J. Am. Ceram. Soc. 64, C154 (1981).CrossRefGoogle Scholar
10Gerasimova, G. F. and Keier, N. P., Kinet. Catal. 12, 1039 (1971).Google Scholar
11Laufand, R. J.Bond, W. D., Ceram. Bull. 63, 278 (1984).Google Scholar
12British Standard BSS No. 1902, Part 1A, 1966.Google Scholar