Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T11:10:46.408Z Has data issue: false hasContentIssue false

Deformation-induced ambient temperature α-to-β phase transition and nanocrystallization in (α + β) titanium alloy

Published online by Cambridge University Press:  31 January 2011

Yong Han*
Affiliation:
State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Huaye Zhuang
Affiliation:
State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Jian Lu
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Kom, Kowloon, Hong Kong, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ambient temperature α-to-β phase transition and nanocrystallization in the aged Ti–25Nb–3Mo–3Zr–2Sn titanium alloy was achieved by surface mechanical attrition treatment (SMAT). The phase transition occurs at α/β interfaces and extends to α phase interiors with increasing strain. It is irreversible and diffusion controlled. The stress-induced increase of Gibbs energy and enrichment of Nb may cause a high order of lattice instability of the α phase adjacent to the α/β interfaces and compel the α phase to β phase. The presence of fine α needles in the aged alloy and the phase transition from α to β with increasing strain are viewed to play a crucial role in the subsequent nanostructuring.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jamieson, J.C.: Crystal structures of titanium, zirconium, and hafnium at high pressures. Science 140, 72 (1963).CrossRefGoogle ScholarPubMed
2.Trinkle, D.R., Hennig, R.G., Srinivasan, S.G., Hatch, D.M., Jones, M.D., Stokes, H.T., Albers, R.C., and Wilkins, J.W.: New mechanism for the alpha to omega martensitic transformation in pure titanium. Phys. Rev. Lett. 91, 025701 (2003).CrossRefGoogle ScholarPubMed
3.Errandonea, D., Meng, Y., Somayazulu, M., and D. Husermann: Pressure-induced transition in titanium metal: A systematic study of the effects of uniaxial stress. Physica B 355, 116 (2005).CrossRefGoogle Scholar
4.Verma, A.K., Modak, P., Rao, R.S., Godwal, B.K., and Jeanloz, R.: High-pressure phases of titanium: First-principles calculations. Phys. Rev. B 75, 014109 (2007).CrossRefGoogle Scholar
5.Vohra, Y.K. and Spencer, P.T.: Novel -phase of titanium metal at megabar pressures. Phys. Rev. Lett. 86, 3068 (2001).CrossRefGoogle ScholarPubMed
6.Akahama, Y., Kawamura, H., and T. Le Bihan: New (Distortedbcc) titanium to 220 GPa. Phys. Rev. Lett. 87, 275503 (2001).CrossRefGoogle ScholarPubMed
7.Ahuja, R., Dubrovinsky, L., Dubrovinskaia, N., Guillen, J.M.O., Mattesini, M., Johansson, B., and Bihan, T. Le: Titanium metal at high pressure: Synchrotron experiments and ab initio calculations. Phys. Rev. B 69, 184102 (2004).CrossRefGoogle Scholar
8.Greeff, C.W., Trinkle, D.R., and Albers, R.C.: Shock-induced transition in titanium. J. Appl. Phys. 90, 2221 (2001).CrossRefGoogle Scholar
9.Gupta, S.C., Joshi, K.D., and Banerjee, S.: Experimental and theoretical investigations on d and f electron systems under high pressure. Metall. Mater. Trans. A 39, 1593 (2008).CrossRefGoogle Scholar
10.Ivanisenko, Y., Kilmametov, A., Rosner, H., and Valiev, R.Z.: Evidence of alpha omega phase transition in titanium after high pressure torsion. Int. J. Mater. Res. 99, 36 (2008).CrossRefGoogle Scholar
11.Prez-Prado, M.T., Gimazov, A.A., Ruano, O.A., Kassner, M.E., and Zhilyaev, A.P.: Bulk nanocrystalline -Zr by high-pressure torsion. Scr. Mater. 58, 219 (2008).CrossRefGoogle Scholar
12.Saito, T., Furuta, T., Hwang, J.H., Kuramoto, S., Nishino, K., Suzuki, N., Chen, R., Yamada, A., Ito, K., Seno, Y., Nonaka, T., Ikehata, H., Nagasako, N., Iwamoto, C., Ikuhara, Y., and Sakuma, T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464 (2003).CrossRefGoogle Scholar
13.Koike, J., Shimoyama, Y., Ohnuma, I., Okamura, T., Kainuma, R., Ishida, K., and Maruyama, K.: Stress-induced phase transformation during superplastic deformation in two-phase TiAlFe alloy. Acta Mater. 48, 2059 (2000).CrossRefGoogle Scholar
14.Hao, Y.L., Li, S.J., Sun, S.Y., Zheng, C.Y., and Yang, R.: Elastic deformation behaviour of Ti24Nb4Zr7.9Sn for biomedical applications. Acta Biomater. 3, 277 (2007).CrossRefGoogle ScholarPubMed
15.Velisavljevic, N. and Chesnut, G.N.: Direct hcp bcc structural phase transition observed in titanium alloy at high pressure. Appl. Phys. Lett. 91, 101906 (2007).CrossRefGoogle Scholar
16.Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
17.Saldana, L., Mndez-Vilas, A., Jiang, L., Multigner, M., Gonzlez-Carrasco, J.L., Prez-Prado, M.T., Gonzlez-Martn, M.L., Munuera, L., and Vilaboa, N.: In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 28, 4343 (2007).CrossRefGoogle ScholarPubMed
18.Doraiswamy, D. and Ankem, S.: The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys. Acta Mater. 51, 1607 (2003).CrossRefGoogle Scholar
19.Zhang, L.C., Zhou, T., Alpay, S.P., Aindow, M., and Wu, M.H.: Origin of pseudoelastic behavior in TiMo-based alloys. Appl. Phys. Lett. 87, 241909 (2005).CrossRefGoogle Scholar
20.Xu, W., Kim, K.B., Das, J., Calin, M., and Eckert, J.: Phase stability and its effect on the deformation behavior of TiNbTaIn/Cr alloys. Scr. Mater. 54, 1943 (2006).CrossRefGoogle Scholar
21.Xu, W., Kim, K.B., Das, J., Calin, M., Rellinghaus, B., and Eckert, J.: Deformation-induced nanostructuring in a TiNbTaIn alloy. Appl. Phys. Lett. 89, 031906 (2006).CrossRefGoogle Scholar
22.Hao, Y.L., Li, S.J., Sun, S.Y., Zheng, C.Y., Hu, Q.M., and Yang, R.: Super-elastic titanium alloy with unstable plastic deformation. Appl. Phys. Lett. 87, 091906 (2005).CrossRefGoogle Scholar
23.Li, S.J., Cui, T.C., Li, Y.L., Hao, Y.L., and Yang, R.: Ultrafinegrained -type titanium alloy with nonlinear elasticity and high ductility. Appl. Phys. Lett. 92, 043128 (2008).CrossRefGoogle Scholar
24.Yu, Z.T. and Zhou, L.: Influence of martensitic transformation on mechanical compatibility of biomedical type titanium alloy TLM. Mater. Sci. Eng., A 438440, 391 (2006).Google Scholar
25.Lu, K. and Lu, J.: Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng., A 375377, 38 (2004).CrossRefGoogle Scholar
26.Han, G.W., Jones, I.P., and Smallman, R.E.: Direct evidence for Suzuki segregation and Cottrell pinning in MP159 superalloy obtained by FEG(S)TEM/EDX. Acta Mater. 51, 2731 (2003).CrossRefGoogle Scholar
27.Zhu, K.Y., Vassel, A., Brisset, F., Lu, K., and Lu, J.: Nanostructure formation mechanism of -titanium using SMAT. Acta Mater. 52, 4101 (2004).CrossRefGoogle Scholar
28.Zhang, L., Han, Y., and Lu, J.: Nanocrystallization of zirconium subjected to surface mechanical attrition treatment. Nanotechnology 19, 165706 (2008).CrossRefGoogle ScholarPubMed
29.Spingarn, J.R. and Nix, W.D.: Diffusional creep and diffusionally accommodated grain rearrangement. Acta Metall. 26, 1389 (1978).CrossRefGoogle Scholar
30.Wentzcovitch, R.M.: Hcp-to-bcc pressure-induced transition in Mg simulated by ab initio molecular dynamics. Phys. Rev. B 50, 10358 (1994).CrossRefGoogle ScholarPubMed