Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:18:27.606Z Has data issue: false hasContentIssue false

Deformation twinning in superlattice structures

Published online by Cambridge University Press:  31 January 2011

M. H. Yoo
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
Get access

Abstract

The role of twinning in deformation and fracture behavior of ordered intermetallic compounds has been investigated from a viewpoint based on the crystallography of twinning. The conjugate relationship between the order twinning and the active slip system at elevated temperatures is identified in all the ordered structures considered. Implications of this conjugate relationship on the strength and ductility of ordered alloys are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pope, D. P. and Liu, C. T., “Strength and Ductility of Intermetallic Compounds,” Superalloys, Composites, and Ceramics, edited by Tien, J. K. (Academic Press, Inc., Orlando, FL, December 1988).Google Scholar
2Yoo, M. H., Horton, J. A., and Liu, C. T., Acta Metall. 36, 2935 (1988).CrossRefGoogle Scholar
3Stoloff, N.S. and Davies, R. G., Prog. Mater. Sci. 13, 3 (1966).Google Scholar
4Mahajan, S. and Williams, D. F., Int. Met. Rev. 18, 43 (1973).CrossRefGoogle Scholar
5Mikkola, D. E. and Cohen, J. B., Acta Metall. 14, 105 (1966).CrossRefGoogle Scholar
6Guimier, A. and Strudel, J. L., in Proc. of Second International Conference on Strength of Metals and Alloys (ASM, Metals Park, OH, 1970), Vol. 3, p. 1145.Google Scholar
7Kear, B.H., Oblak, J.M., and Giamei, A. F., ibid., p. 1155.Google Scholar
8Chakraborty, S. B. and Stark, E. A. Jr., Acta Metall. 23, 63 (1975).CrossRefGoogle Scholar
9Green, M.L. and Cohen, M., Acta Metall. 27, 1523 (1979).CrossRefGoogle Scholar
10Goo, E., Duerig, T., Melton, K., and Sinclair, R., Acta Metall. 33, 1725 (1985).CrossRefGoogle Scholar
11Cahn, R. W. and Coll, J. A., Acta Metall. 9, 138 (1961).CrossRefGoogle Scholar
12Boiling, G. F. and Richman, R. H., Acta Metall. 13, 709 (1965).CrossRefGoogle Scholar
13Lipsitt, H. A., Shechtman, D., and Schafrik, R. E., Metall. Trans. A 6A, 1991 (1975).Google Scholar
14Shechtman, D. and Jacobson, L. A., Metall. Trans. A 6A, 1325 (1975).CrossRefGoogle Scholar
15Yamaguchi, M., Umakoshi, Y., and Yamane, T., Philos. Mag. 55, 301 (1987).CrossRefGoogle Scholar
16Faress, A. and Vanderschaeve, G., Acta Metall. 35, 691 (1987).CrossRefGoogle Scholar
17Vanderschaeve, G. and Escaig, B., Phys. Status Solidi A 20, 309 (1973).CrossRefGoogle Scholar
18Arunachalam, V. S. and Sargent, G. M., Scripta Metall. 5, 949 (1971).CrossRefGoogle Scholar
19Christian, J. W. and Laughlin, D.E., Acta Metall. 36, 1617 (1988).CrossRefGoogle Scholar
20Bilby, B.A. and Crocker, A. G., Proc. R. Soc. London, Sect. A 288, 240 (1965).Google Scholar
21Bevis, M. and Crocker, A. G., Proc. R. Soc. London, Sect. A 304, 123 (1968).Google Scholar
22Bevis, M. and Crocker, A. G., Proc. R. Soc. London, Sect. A 313, 509 (1969).Google Scholar
23Yoo, M.H. and Loh, B.T. M., in Fundamental Aspects of Dislocation Theory, edited by Simmons, J. A., deWit, R., and Bullough, R. (US-NBS Spec. Publ. 317, 1970), Vol. I, p. 479.Google Scholar
24Pashley, D. W., Robertson, J. L., and Stowell, M. J., Philos. Mag. 19, 83 (1969).CrossRefGoogle Scholar
25Yoo, M.H., Metall. Trans. A 12A, 409 (1981).CrossRefGoogle Scholar
26Cahn, J. W., Acta Metall. 25, 1021 (1977).CrossRefGoogle Scholar
27Lee, J. K. and Yoo, M. H. (to be published).Google Scholar
28Nicholson, D. M., ORNL (private communication).Google Scholar