Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T18:56:54.911Z Has data issue: false hasContentIssue false

Deformation behavior of core–shell nanowire structures with coherent and semi-coherent interfaces

Published online by Cambridge University Press:  06 February 2019

Hang Ke*
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York 13699, USA
Ioannis Mastorakos
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York 13699, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The mechanical properties of core–shell bimetallic composite nanowires, forming the bases of nanoporous metallic foams, have been investigated and compared with pure metal nanowires using molecular dynamics simulations. In the current study, pure copper and gold nanowires under uniaxial loading were tested at room temperature and compared to composite nanowires of the same materials (core) with a nickel coating (shell). The core radius ranged from 1 to 15 nm, and the shell thickness ranged from 0.1 to 5 nm. The tension strain was performed along the [001] direction under room temperature. Both coherent and semi-coherent composite nanowires were studied, and the effect of coating layer thickness was investigated. The strengthening mechanisms of the core–shell structures due to the presence of the two different types of interfaces were investigated for various nickel thicknesses. The atomistic simulation results revealed that the addition of the nickel shell strengthens the structure when the layer thickness exceeds a critical value.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xue, Y., Liu, J., Chen, H., Wang, R., Li, D., Qu, J., and Dai, L.: Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem., Int. Ed. 51, 12124 (2012).CrossRefGoogle ScholarPubMed
Bhaviripudi, S., Mile, E., Steiner, S.A., Zare, A.T., Dresselhaus, M.S., Belcher, A.M., and Kong, J.: CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc. 129, 1516 (2007).CrossRefGoogle ScholarPubMed
Patel, A.C., Li, S., Wang, C., Zhang, W., and Wei, Y.: Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem. Mater. 19, 1231 (2007).CrossRefGoogle Scholar
Corbin, S.F., Clemmer, R.M.C., and Yang, Q.: Development and characterization of porous composites for solid oxide fuel cell anode conduction layers using ceramic-filled highly porous Ni foam. J. Am. Ceram. Soc. 92, 331 (2009).CrossRefGoogle Scholar
Tseng, C-J., Heush, Y-J., Chiang, C-J., Lee, Y-H., and Lee, K-R.: Application of metal foams to high temperature PEM fuel cells. Int. J. Hydrogen Energy 41, 16196 (2016).CrossRefGoogle Scholar
Shinde, R. and Tayade, M.: Remarkable hydrogen storage on beryllium oxide clusters: First-principles calculations. J. Phys. Chem. C 118, 17200 (2014).CrossRefGoogle Scholar
Mellouli, S., Dhaou, H., Askri, F., Jemni, A., and Ben Nasrallah, S.: Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger. Int. J. Hydrogen Energy 34, 9393 (2009).CrossRefGoogle Scholar
Biener, J., Nyce, G.W., Hodge, A.M., Biener, M.M., Hamza, A.V., and Maier, S.A.: Nanoporous plasmonic metamaterials. Adv. Mater. 20, 1211 (2008).CrossRefGoogle Scholar
Biener, J., Hodge, A.M., and Hamza, A.V.: Microscopic failure behavior of nanoporous gold. Appl. Phys. Lett. 87, 121908 (2005).CrossRefGoogle Scholar
Zhou, Q., Xie, J.Y., Wang, F., Huang, P., Xu, K.W., and Lu, T.J.: The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mech. Sin. 31, 319 (2015).CrossRefGoogle Scholar
Mastorakos, I.N., Zbib, H.M., and Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94, 173114 (2009).CrossRefGoogle Scholar
Hoagland, R.G., Kurtz, R.J., and Henager, C.H. Jr.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).CrossRefGoogle Scholar
Abdolrahim, N., Zbib, H.M., and Bahr, D.F.: Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 52, 33 (2014).CrossRefGoogle Scholar
Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D.: Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).CrossRefGoogle Scholar
Mastorakos, I.N., Abdolrahim, N., and Zbib, H.M.: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).CrossRefGoogle Scholar
Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H.: On the strengthening effects of interfaces in multilayer fee metallic composites. Philos. Mag. A 82, 643 (2002).Google Scholar
Shao, S. and Medyanik, S.N.: Dislocation–interface interaction in nanoscale fcc metallic bilayers. Mech. Res. Commun. 37, 315 (2010).CrossRefGoogle Scholar
Mitlin, D., Misra, A., Mitchell, T.E., Hirth, J.P., and Hoagland, R.G.: Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films. Philos. Mag. 85, 3379 (2005).CrossRefGoogle Scholar
Shao, S. and Wang, J.: Relaxation mechanisms, structure and properties of semi-coherent interfaces. Metals 5, 1887 (2015).CrossRefGoogle Scholar
Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 56, 5685 (2008).CrossRefGoogle Scholar
Hoagland, R.G., Hirth, J.P., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86, 3537 (2006).CrossRefGoogle Scholar
Abdolrahim, N., Mastorakos, I.N., and Zbib, H.M.: Deformation mechanisms and pseudoelastic behaviors in trilayer composite metal nanowires. Phys. Rev. B 81, 054117 (2010).CrossRefGoogle Scholar
Li, P., Yang, Y., Luo, X., Jin, N., Liu, G., and Gao, Y.: Structural evolution of copper–silver bimetallic nanowires with core–shell structure revealed by molecular dynamics simulations. Comput. Mater. Sci. 137(Suppl. C), 289 (2017).CrossRefGoogle Scholar
Sun, X-Y., Xu, Y., Wang, G-F., Gu, Y., and Feng, X-Q.: Effects of surface atomistic modification on mechanical properties of gold nanowires. Phys. Lett. A 379, 1893 (2015).CrossRefGoogle Scholar
Abdolrahim, N., Bahr, D.F., Revard, B., Reilly, C., Ye, J., Balk, T.J., and Zbib, H.M.: The mechanical response of core–shell structures for nanoporous metallic materials. Philos. Mag. 93, 736 (2013).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
Daw, M.S., Foiles, S.M., and Baskes, M.I.: The embedded-atom method: A review of theory and applications. Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
Voter, A.F. and Chen, S.P.: Accurate interatomic potentials for Ni, Al, and Ni3Al. MRS Online Proc. Libr. 82, 175180 (1986).CrossRefGoogle Scholar
Zhou, X.W., Johnson, R.A., and Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004).CrossRefGoogle Scholar
Ward, L., Agrawal, A., Flores, K.M., and Windl, W.: Rapid production of accurate embedded-atom method potentials for metal alloys. ArXiv12090619 Cond-Mat Physicsphysics (2012).Google Scholar
Zimmerman, J.A., Gao, H., and Abraham, F.F.: Generalized stacking fault energies for embedded atom FCC metals. Modell. Simul. Mater. Sci. Eng. 8, 103 (2000).CrossRefGoogle Scholar
Davoodi, J., Dadashi, S., and Yarifard, M.: Molecular dynamics simulations of the melting of Al–Ni nanowires. Philos. Mag. 96, 2300 (2016).CrossRefGoogle Scholar
Divi, S. and Chatterjee, A.: Understanding segregation behavior in AuPt, NiPt, and AgAu bimetallic nanoparticles using distribution coefficients. J. Phys. Chem. C 120, 27296 (2016).CrossRefGoogle Scholar
Zientarski, T. and Chocyk, D.: Structure and stress in Cu/Au and Fe/Au systems: A molecular dynamics study. Thin Solid Films 562(Suppl. C), 347 (2014).CrossRefGoogle Scholar
Hirel, P.: Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212 (2015).CrossRefGoogle Scholar
Honeycutt, J.D. and Andersen, H.C.: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950 (1987).CrossRefGoogle Scholar
Faken, D. and Jónsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 (1994).CrossRefGoogle Scholar
Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).CrossRefGoogle Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).CrossRefGoogle Scholar
Marian, J. and Knap, J.: Breakdown of self-similar hardening behavior in Au nanopillar microplasticity. Int. J. Multiscale Comput. Eng. 5, 287294 (2007).CrossRefGoogle Scholar
Gan, Y. and Chen, J.K.: Molecular dynamics study of size, temperature and strain rate effects on mechanical properties of gold nanofilms. Appl. Phys. A 95, 357 (2009).CrossRefGoogle Scholar
Misra, A. and Hoagland, R.G.: Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 42, 1765 (2007).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
Hirth, J.P. and Feng, X.: Critical layer thickness for misfit dislocation stability in multilayer structures. J. Appl. Phys. 67, 3343 (1990).CrossRefGoogle Scholar
Mastorakos, I.N., Bellou, A., Bahr, D.F., and Zbib, H.M.: Size-dependent strength in nanolaminate metallic systems. J. Mater. Res. 26, 1179 (2011).CrossRefGoogle Scholar
Chu, H.J., Wang, J., Zhou, C.Z., and Beyerlein, I.J.: Self-energy of elliptical dislocation loops in anisotropic crystals and its application for defect-free core/shell nanowires. Acta Mater. 59, 7114 (2011).CrossRefGoogle Scholar
Misra, A. and Krug, H.: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3, 217 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
Supplementary material: File

Ke and Mastorakos supplementary material

Tables SI-IV and Figures S1-S4

Download Ke and Mastorakos supplementary material(File)
File 681.5 KB