Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:19:10.406Z Has data issue: false hasContentIssue false

Defect model of melt-grown GaAs

Published online by Cambridge University Press:  31 January 2011

Richard A. Morrow
Affiliation:
Department of Physics and Astronomy, University of Maine, Orono, Maine 04469
Get access

Abstract

A phenomenological model is developed to treat defect properties and defect chemistry in melt-grown GaAs. Defects are characterized by their charge and their stoichiometric signature (local deviation from stoichiometry); no specific atomic structure is assumed for them. Good fits to existing data are obtained for the room-temperature concentrations of the midgap donor (EL2), an unknown double acceptor, electrons, and holes as functions of melt composition. In obtaining these fits the role and importance of the (unknown) GaAs solidus is emphasized and it is demonstrated that many popular models of EL2 are consistent with the data analyzed. The model is extended to account for the observed decrease of EL2 concentration with increasing boron or silicon doping concentration, and here again attention is clearly focused on certain unknown information concerning the crystal formation process. Fundamental parameters in the model whose values are estimated through fits to the data include (1) the equilibrium constant in the defect reaction between EL2 and the double acceptor, (2) the equilibrium constant in the defect reaction between EL2, BAs and BGa, (3) the fractions of boron and silicon taken up on Ga sites during the crystal formation process, and (4) the proportionality factor between the melt composition and the crystal composition.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Martin, G. M., Mitonneau, A., and Mircea, A., Electron. Lett. 13, 191 (1977).CrossRefGoogle Scholar
2Makram-Ebeid, S., Langlade, P., and Martin, G. M., in Semi-Insulating III- VMaterials: Kah-ne-ta 1984, edited by Look, D. C. and Blakemore, J. S. (Shiva, Nantwich, England, 1984), p. 184.Google Scholar
3Bardeleben, H. J. von, Stievenard, D., Deresmes, D., Huber, A., and Bourgoin, J. C., Phys. Rev. B 34, 7192 (1986).CrossRefGoogle Scholar
4Wager, J. F. and Vechten, J. A. Van, Phys. Rev. B 35, 2330 (1987).CrossRefGoogle Scholar
5Vechten, J. A. Van, J. Electrochem. Soc. 122, 419 and 423 (1975).CrossRefGoogle Scholar
6Zou, Y., Inst. Phys. Conf. Ser. 63, 185 (1981).Google Scholar
7Wang, G., Zou, Y., Bennaki, S., Goltzene, A., and Schwab, C., in Semi-Insulating III-VMaterials: Hakone 1986, edited by Kukimoto, H. and Miyazawa, S. (Ohmsha, Tokyo, Japan, 1986), p. 398; Z. Zou and Y. Zou, Mater. Lett. 4, 286 (1986).Google Scholar
8Spaeth, J.-M., in Ref. 7, p. 299.Google Scholar
9Ikoma, T., TanigUchi, M., and Mochizuki, Y., Inst. Phys. Conf. Ser. 74, 65 (1984).Google Scholar
10Ikoma, T. and Mochizuki, Y., Jpn. J. Appl. Phys. 24, L 935 (1985).CrossRefGoogle Scholar
11Walukiewicz, W., Lagqwski, J., and Gatos, H. C., Appl. Phys. Lett. 43, 112 (1983).CrossRefGoogle Scholar
12Johnson, E. J., Kafalas, J. A., and Davies, R. W., J. Appl. Phys. 54, 204 (1983).CrossRefGoogle Scholar
13Hunter, A. T., Kimura, H., Baukus, J. P., Winston, H. V., and Marsh, O. J., Appl. Phys. Lett. 44, 74 (1984).CrossRefGoogle Scholar
14Chen, R. T., Holmes, D. E., and Asbeck, P. M., Appl. Phys. Lett. 45, 459 (1984).CrossRefGoogle Scholar
15Holmes, D. E., Chen, R. T., Elliott, K. R., Kirkpatrick, C. G., and Yu, P. W., IEEE Trans. Microwave Theory Tech. 30, 949 (1982).CrossRefGoogle Scholar
16Holmes, D. E., Chen, R. T., Elliott, K. R., and Kirkpatrick, C. G., Appl. Phys. Lett. 40, 46 (1982).CrossRefGoogle Scholar
17Holmes, D. E., Elliott, K. R., Chen, R. T., and Kirkpatrick, C. G., in Semi-Insulating III- VMaterials: Evian 1982, edited by Makram-Ebeid, S. and Tuck, B. (Shiva, Nantwich, England, 1982), p. 19.Google Scholar
18Elliott, K. R., Holmes, D. E., Chen, R. T., and Kirkpatrick, C. G., Appl. Phys. Lett. 40, 898 (1982).CrossRefGoogle Scholar
19Elliott, K. R., Appl. Phys. Lett. 42, 274 (1983).CrossRefGoogle Scholar
20Elliott, K., Chen, R. T., Greenbaum, S. G., and Wagner, R. J., Appl. Phys. Lett. 44, 907 (1984).CrossRefGoogle Scholar
21Elliott, K. R., Chen, R. T., Greenbaum, S. G., and Wagner, R. J., in Ref. 2, p. 239.Google Scholar
22Winston, H., Solid-State Technol. 26, 145 (1983).Google Scholar
23Edelin, G. and Mathiot, D., Philos. Mag. B 42, 95 (1980).CrossRefGoogle Scholar
24Brozel, M. R., Clegg, J. B., and Newman, R. C., J. Phys. D 11, 1331 (1978).Google Scholar
25Brozel, M. R., in Ref. 7, p. 217.Google Scholar
26Brozel, M. R., Foulkes, E. J., Series, R. W., and Hurle, D. T. J., Appl. Phys. Lett. 49, 337 (1986).CrossRefGoogle Scholar
27Deiri, M., Homewood, K. P., and Cavenett, B. C., J. Phys. C17, L 627 (1984).Google Scholar
28Wosinski, T., Appl. Phys. A 36, 213 (1985).CrossRefGoogle Scholar
29Osaka, J., Okamoto, H., and Kobayashi, K., in Ref. 7, p. 421.Google Scholar
30Bishop, S. G., Shanabrook, B. V., and Moore, W. J., J. Appl. Phys. 56, 1785 (1984).CrossRefGoogle Scholar
31Moore, W. J., Shanabrook, B. V., and Kennedy, T. A., in Ref. 2, p. 453.Google Scholar
32Shanabrook, B. V., Moore, W. J., and Bishop, S. G., J. Appl. Phys. 59, 2535 (1986).CrossRefGoogle Scholar
33Barra, F., Fisher, P., and Rodriques, S., Phys. Rev. B 7, 5285 (1973).CrossRefGoogle Scholar
34Dansas, P., J. Appl. Phys. 58, 2212 (1985).CrossRefGoogle Scholar
35Theis, W. M., Bajaj, K. K., Litton, C. W., and Spitzer, W. G., Appl. Phys. Lett. 41, 70 (1982).CrossRefGoogle Scholar
36Hopgood, H. M., Ta, L. B., Rohatgi, A, Eldridge, G. W., and Thomas, R. N., in Ref. 17, p. 28.Google Scholar
37Seki, Y., Watanabe, H., and Matsui, J., J. Appl. Phys. 49, 822 (1978).CrossRefGoogle Scholar
38Morrison, S. R., Newman, R. C., and Thompson, F., J. Phys. C 7, 633 (1974).Google Scholar
39Gledhill, G. A., Newman, R. C., and Woodhead, J., J. Phys. C 17, L301 (1984).Google Scholar
40Elliott, K. R., J. Appl. Phys. 55, 3856 (1984).CrossRefGoogle Scholar
41Ta, L. B., Hobgood, H. M., and Thomas, R. N., Appl. Phys. Lett. 41, 1091 (1982).CrossRefGoogle Scholar
42Osaka, J., Hyuga, F., Kobayashi, T., Yamada, Y., and Orito, F., Appl. Phys. Lett. 50, 191 (1987).CrossRefGoogle Scholar
43Figielski, T., Appl. Phys. A 35, 255 (1984).CrossRefGoogle Scholar
44Blakemore, J. S., in Ref. 7, p. 389.Google Scholar
45Blakemore, J. S., J. Appl. Phys. 53, R123 (1982).CrossRefGoogle Scholar
46Lagowski, J., Parsey, J. M., Kaminska, M., Wada, K., and Gatos, H. C., in Ref. 17, p. 154.Google Scholar
47Lagowski, J., Gatos, H. C., Parsey, J. M., Wada, K., Kaminska, M., and Walukiewicz, W., Appl. Phys. Lett. 40, 342 (1982).CrossRefGoogle Scholar
48Terashima, K., Washizuka, S., Nishio, J., Okada, A., Yasuami, S., and Watanabe, M., Inst. Phys. Conf. Ser. 79, 37 (1986).Google Scholar
49Terashima, K., Nishio, J., Okada, A., Washizuka, S., and Watanabe, M., J. Cryst. Growth 79, 463 (1986).CrossRefGoogle Scholar
50Ivashchenko, A. I., Kopanskaya, F. Ya., and Kuzmenko, G. S., J. Phys. Chem. Solids 45, 871 (1984).CrossRefGoogle Scholar