Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T17:59:38.511Z Has data issue: false hasContentIssue false

The decay of carbon, luminescence in liquid-encapsulated Czochralski-grown semi-insulating GaAs

Published online by Cambridge University Press:  31 January 2011

C. K. Teh
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
J. Tuszyński
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
F. L. Weichman
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
Get access

Abstract

In undoped liquid-encapsulated Czochralski-grown semi-insulating gallium arsenide (LEC SI GaAs), the carbon acceptor, CAS, is responsible for the ∼1.49 eV emission due to donor-acceptor (D–A) pair radiative recombination. We have studied the effect of different carbon concentrations on the line shape and decay kinetics at and near the D–A emission peak for temperatures ranging from 4.2 to 34 K. The photoluminescence decay has been found to follow a double exponential law at the early stage of the decay but follows a power law of the form L(t)αT−p at a later stage. Analysis of the temperature dependence of the exponential components gives two activation energies of ≃5.7 and ≃15 meV. We find that the 5.7 meV is most likely associated with SiGa shallow donor, while the 15 meV is due to a more indirect process involving an EL2 related donor cluster near 20 meV. The exponent, p, of the power-law decay is found to be both temperature (T) and concentration dependent of the form p = βT −1, where β is a linear function of the concentration of the acceptors, CAs, in the temperature range of 18  T < 30 K. A promising, simplified model based on a continuous set of trapping levels is presented and compared to the experiments. Some aspects of the observed exponential and power law decays are predicted by the theory.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Holmes, D.E., Chen, R.T., Elliott, K. R., Kirkpatrick, C. G., and Yu, P.W., IEEE Trans. Electron Devices 29, 1045 (1982).CrossRefGoogle Scholar
2Holmes, D.E., Chen, R.T., Elliott, K.R., and Kirkpatrick, C.G., Appl. Phys. Lett. 40, 46 (1982).Google Scholar
3Ta, L. B., Hobgood, A. M., Rohatgi, A., and Thomas, R. N., J. Appl. Phys. 53, 5771 (1982).CrossRefGoogle Scholar
4Kirkpatrick, C. G., Chen, R.T., Holmes, D. E., Asbeck, P. M., Elliott, K. R., Fairman, R. D., and Oliver, J. R., Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1984), Vol. 20, p. 159.Google Scholar
5Sze, S. M. and Irvin, J. C., Solid-State Electron. 11, 599 (1968).CrossRefGoogle Scholar
6Ashen, D.J., Dean, P.J., Hurle, D.T.J., Mullin, J.B., and White, A.M., J. Phys. Chem. Solids 36, 1041 (1975).Google Scholar
7Ozeki, M., Nakai, K., Dazai, K., and Ryuzan, O., Jpn. J. Appl. Phys. 13, 1121 (1974).CrossRefGoogle Scholar
8Jeong, M., Shirafuji, J., and Inuishi, Y., Jpn. J. Appl. Phys. 20, 795 (1981).Google Scholar
9Stringfellow, G. B., Koschel, W., Briones, F., Gladstone, J., and Patterson, G., Appl. Phys. Lett. 39, 581 (1981).CrossRefGoogle Scholar
10The, C. K., Tin, C. C., and Weichman, F. L., Can. J. Phys. 65, 945 (1987).Google Scholar
11Jonscher, A. K. and A. de Polignac, J. Phys. C 17, 6493 (1984).Google Scholar
12Leverenz, H.W., An Introduction to Luminescence of Solids (John Wiley & Sons, New York, 1950), p. 269.Google Scholar
13Hunter, A.T., Kimura, H., Baukus, J.P., Winston, H.V., and Marsh, O. J., Appl. Phys. Lett. 44, 74 (1984).CrossRefGoogle Scholar
14Brozel, M. R., Clegg, J. B., and Newman, R. C., J. Phys. D 11, 1331 (1978).CrossRefGoogle Scholar
15Skromme, B. J. and Stillman, G. E., Phys. Rev. B 29, 1982 (1984).Google Scholar
16Roth, A. P., Charbonneau, S., and Goodchild, R. G., J. Appl. Phys. 54, 5350 (1983).Google Scholar
17Schairer, W. and Schmidt, M., Phys. Rev. B 10, 2501 (1974).Google Scholar
18Schairer, W. and Graman, W., J. Phys. Chem. Solids 30, 2225 (1969).CrossRefGoogle Scholar
19Dingle, R., Phys. Rev. 184, 788 (1969).CrossRefGoogle Scholar
20Weiner, J. S. and Yu, P.Y., J. Appl. Phys. 55, 3889 (1984).CrossRefGoogle Scholar
21Ulbrich, R., in Proc. of the Twelfth Int. Conf. on the Physics of Semiconductors, edited by Pilkuhn, M. H. (B. G. Teubner, Stuttgart,1974), p. 376.Google Scholar
22Watts, R. K., Point Defects in Crystals (John Wiley & Sons, New York, 1977).Google Scholar
23Walukiewicz, W., Lagowski, J., and Gatos, H. C., Appl. Phys. Lett. 43, 112 (1983).Google Scholar
24Kurita, S., Czaja, W., and Kinmond, S., Solid State Commun. 32, 879 (1979).CrossRefGoogle Scholar
25Dean, P. J., Progress in Solid State Chem. 8, 64 (1973).Google Scholar
26Thomas, D. G., Hopfield, J. J., and Augustyniak, W. M., Phys. Rev. 140, A202 (1965).CrossRefGoogle Scholar
27Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals Series and Products (Academic Press, New York, 1965).Google Scholar
28Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions (Dover, New York, 1965).Google Scholar