Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T12:59:23.185Z Has data issue: false hasContentIssue false

Cyclic Nanoindentation and Raman Microspectroscopy Study of Phase Transformations in Semiconductors

Published online by Cambridge University Press:  31 January 2011

Yury G. Gogotsi
Affiliation:
University of Illinois at Chicago, Department of Mechanical Engineering, 842 West Taylor Street, Chicago, Illinois 60607–7022
Vladislav Domnich
Affiliation:
University of Illinois at Chicago, Department of Mechanical Engineering, 842 West Taylor Street, Chicago, Illinois 60607–7022
Sergey N. Dub
Affiliation:
Institute for Superhard Materials, 2 Avtozavodskaya St., Kiev 254074, Ukraine
Andreas Kailer
Affiliation:
Universität Tübingen, Institut für Mineralogie, Petrologie und Geochemie, Wilhelmstr. 56, D-72074 Tübingen, Germany
Klaus G. Nickel
Affiliation:
Universität Tübingen, Institut für Mineralogie, Petrologie und Geochemie, Wilhelmstr. 56, D-72074 Tübingen, Germany
Get access

Abstract

This paper supplies new interpretation of nanoindentation data for silicon, germanium, and gallium arsenide based on Raman microanalysis of indentations. For the first time, Raman microspectroscopy analysis of semiconductors within nanoindentations is reported. The given analysis of the load-displacement curves shows that depth-sensing indentation can be used as a tool for identification of pressure-induced phase transformations. Volume change upon reverse phase transformation of metallic phases results either in a pop-out (or a kink-back) or in a slope change (elbow) of the unloading part of the load-displacement curve. Broad and asymmetric hysteresis loops of changing width, as well as changing slope of the elastic part of the loading curve in cyclic indentation can be used for confirmation of a phase transformation during indentation. Metallization pressure can be determined as average contact pressure (Meyer's hardness) for the yield point on the loading part of the load-displacement curve. The pressure of the reverse transformation of the metallic phase can be measured from pop-out or elbow on the unloading part of the diagram. For materials with phase transformations less pronounced than in Si, replotting of the loaddisplacement curves as average contact pressure versus relative indentation depth is required to determine the transformation pressures and/or improve the accuracy of data interpretation.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F., and Hockey, B.J., Phys. Rev. Lett. 60, 2156 (1988).CrossRefGoogle Scholar
2.Gogotsi, Y.G., Kailer, A., and Nickel, K.G., Materials Research Innovations 1, 3 (1997).CrossRefGoogle Scholar
3.Kailer, A., Gogotsi, Y.G., and Nickel, K.G., J. Appl. Phys. 81, 3057 (1997).CrossRefGoogle Scholar
4.Pharr, G.M., Oliver, W.C., and Harding, D.S., J. Mater. Res. 6, 1129 (1991).CrossRefGoogle Scholar
5.Pharr, G.M., Oliver, W.C., Cook, R.F., Kirchner, P.D., Kroll, M.C., Dinger, T.R., and Clarke, D.R., J. Mater. Res. 7, 961 (1992).CrossRefGoogle Scholar
6.Pharr, G.M., Oliver, W.C., and Clarke, D.R., J. Electron. Mater. 19, 881 (1990).CrossRefGoogle Scholar
7.Gilman, J.J., J. Mater. Res. 7, 535 (1992).CrossRefGoogle Scholar
8.Hainsworth, S.V., Whitehead, A.J., and Page, T.F., in Plastic Deformation of Ceramics, edited by Bradt, R.C., Brookes, C.A., and Routbort, J.L. (Plenum Press, New York, 1995), p. 173.CrossRefGoogle Scholar
9.Morris, J.C. and Callahan, D.L., in Microstructure of Materials, edited by Krishnan, K.M. (San Francisco Press, San Francisco, 1992), p. 104.Google Scholar
10.Callahan, D.L. and Morris, J.C., J. Mater. Res. 7, 1614 (1992).CrossRefGoogle Scholar
11.Novikov, N.V., Dub, S.N., Milman, Y.V., Gridneva, I.V., and Chugunova, S.I., Sverkhtverdye Materialy (Superhard Materials) 18, 37 (1996).Google Scholar
12.Dub, S.N., in Thin Films: Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Nastasi, M., Busso, E.P., and Oliwer, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), pp. 223228.Google Scholar
13.McMahon, M.I. and Nelmes, R.J., Phys. Status Solidi B 198, 389 (1996).CrossRefGoogle Scholar
14.Besson, J.M., Itie, J.P., Polian, A., Weill, G., Masot, J.L., and Gonzalez, J., Phys. Rev. B 44, 421 (1991).CrossRefGoogle Scholar
15.Gilman, J.J., Czech J. Phys. 45, 913 (1995).CrossRefGoogle Scholar
16.Gogotsi, Y., Rosenberg, M.S., Kailer, A., and Nickel, K.G., in Proceedings of the Workshop on Tribology Issues and Opportunities in MEMS, edited by Bhushan, B. (Kluwer, Dordrecht, The Netherlands, 1998), pp. 431442.CrossRefGoogle Scholar
17.Needs, R.J. and Mujica, A., Phys. Rev. B 51, 9652 (1995).CrossRefGoogle Scholar
18.Piltz, R.O., Maclean, J.R., Clark, S.J., Ackland, G.J., Hatton, P.D., and Crain, J., Phys. Rev. B 52, 4072 (1995).CrossRefGoogle Scholar
19.Gridneva, I.V., Milman, Y.V., and Trefilov, V.I., Phys. Status Solidi A 9, 177 (1972).CrossRefGoogle Scholar
20.Weppelmann, E.R., Field, J.S., and Swain, M.V., J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
21.Weppelmann, E.R., Field, J.S., and Swain, M.V., J. Mater. Sci. 30, 2455 (1995).CrossRefGoogle Scholar
22.Gupta, M.C. and Ruoff, A.L., J. Appl. Phys. 51, 1072 (1980).CrossRefGoogle Scholar
23.Crain, J., Ackland, G.J., Maclean, J.R., Piltz, R.O., Hatton, P.D., and Pawley, G.S., Phys. Rev. B 50, 13043 (1994).CrossRefGoogle Scholar
24.Haasen, P. and Kelly, A., Acta Metall. Mater. 5, 192 (1957).CrossRefGoogle Scholar
25.Alekhin, V.P., Physica Prochnosti i Plastichnosti Poverkhnostnykh Sloev Materialov (Nauka, Moscow, 1983).Google Scholar
26.Bhushan, B., Kulkarni, A.V., Bonin, W., and Wyrobek, J.T., Philos. Mag. A 74, 1117 (1996).CrossRefGoogle Scholar
27.Page, T.F., Oliver, W.C., and McHargue, C.J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
28.Nelmes, R.J., McMahon, M.I., Wright, N.G., Allan, D.R., and Loveday, J.S., Phys. Rev. B 48, 9883 (1993).CrossRefGoogle Scholar
29.Menoni, C.S., Hu, J.Z., and Spain, I.L., Phys. Rev. B 34, 362 (1986).CrossRefGoogle Scholar
30.Bates, C.H., Dachille, F., and Roy, R., Science 147, 860 (1965).CrossRefGoogle Scholar
31.Kailer, A., Gogotsi, Y.G., and Nickel, K.G., in High Pressure Materials Research, edited by Wentzcovitch, R.M., Hemley, R.J., Nellis, W.J., and Yu, P.Y. (Mater. Res. Soc. Symp. Proc. 499, Warrendale, PA, 1998), pp. 225230.Google Scholar
32.Ashcroft, N.W. and Mermin, N.D., Solid State Physics (Saunders College Publishing, Philadelphia, PA, 1976).Google Scholar
33.Chen, A.B., Sher, A., and Yost, W.T., in The Mechanical Properties of Semiconductors, edited by Faber, K.T. and Malloy, K. (Academic Press, London, 1992), Vol. 37, p. 68.CrossRefGoogle Scholar