Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T01:12:33.007Z Has data issue: false hasContentIssue false

Crystallographic and transport studies on AsF5 intercalated graphite from 4.2 to 295 K. I. Structural ordering and phase separation

Published online by Cambridge University Press:  31 January 2011

M. Lelaurain
Affiliation:
Laboratoire de Chimie du solide Minéral, Service de Chimie Minérale Appliquée, UA CNRS 158, Université de Nancy 1, BP239,54506 Vandoeuvre les Nance, France
J. F. Marêché
Affiliation:
Laboratoire de Chimie du solide Minéral, Service de Chimie Minérale Appliquée, UA CNRS 158, Université de Nancy 1, BP239,54506 Vandoeuvre les Nance, France
E. McRae
Affiliation:
Laboratoire de Chimie du solide Minéral, Service de Chimie Minérale Appliquée, UA CNRS 158, Université de Nancy 1, BP239,54506 Vandoeuvre les Nance, France
G. Furdin
Affiliation:
Laboratoire de Chimie du solide Minéral, Service de Chimie Minérale Appliquée, UA CNRS 158, Université de Nancy 1, BP239,54506 Vandoeuvre les Nance, France
A. Hérold
Affiliation:
Laboratoire de Chimie du solide Minéral, Service de Chimie Minérale Appliquée, UA CNRS 158, Université de Nancy 1, BP239,54506 Vandoeuvre les Nance, France
Get access

Abstract

A study of the (00l), (hk0), and (hkl) reflections of stage 1 AsF5 intercalated graphite between 4.2 and 295 K has been done using synchrotron radiation for single-crystal samples and a linear detector setup for those based on highly oriented pyrographite (HOPG). The nature and temperature dependence of the structural ordering allow the materials to be classified into (at least) two types related to the degree to which the AsF5 has been converted into AsF6 and AsF3. At 295 K a small amount of in-plane order is detected within the essentially two-dimensional (2-D) liquid intercalate attributed to small quantities of AsF5 and AsF6 − AsF5-ordered phases. Lowering the temperature leads to increased phase separation through crystallization and to changes in the in-plane unit cells associated with each. The most marked structural change is an incommensurate-to-commensurate (I⇉C) transformation within the AsF5 phase, which starts at 215 ± 5 K. No new structural order is detected below 180 K. The (00l) studies give clear confirmation of the existence of separate phases with different values of interplanar distance. A smaller number of stage 2 compounds were examined. The most clearly different feature is that the I⇉C transformation is downshifted by ∼ 70 K. At room temperature, the stacking sequences are A/A/A … for stage 1 and A/AB/BC/CA … for stage 2.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Falardeau, E. R. G. Foley, M. T.Zeller, C. and Vogel, F. L.J. Chem. Soc. Chem. Comm. 1977, 389.Google Scholar
2Foley, G. M. T.Zeller, C.Falardeau, E. R. and Vogel, F. L.Solid StateCommun. 24, 371 (1977).Google Scholar
3Shioya, J.Matsubara, H. and Murakami, S.Synth. Met. 14, 113 (1986).Google Scholar
4Bartlett, N.Biagoni, R.Richardson, T. J.McQuillan, B. and Tanzella, F. 6th European Symposium on Fluorine Chemistry Dort-mund, Federal Republic of Germany, 28 March-1 April 1977, Abstract No. 157.Google Scholar
5Ebert, L. B.Mills, D. R. and Scanlon, J. C.Mater. Res. Bull. 14, 1369 (1979).CrossRefGoogle Scholar
6Markiewicz, R. S.Hart, H. R.Interrante, L. V. and Kasper, J. S.Synth. Met. 2, 331 (1980).Google Scholar
7McRae, E.Lelaurain, M.Mareche, J. F.Furdin, G.Herold, A. and Jean, M. Saint, J. Mater. Res. 3, 97 (1988).Google Scholar
8Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, Orsay, France.Google Scholar
9Lelaurain, M.Mareche, J. F.Herold, A. and Rousseaux, F.J. Chim. Phys. 11/12, 81 (1984).Google Scholar
10Nadi, N. E.McRae, E.Mareche, J. F.Lelaurain, M. and Herold, A.Carbon 24, 695 (1986).CrossRefGoogle Scholar
11Dresselhaus, M. S. and Dresselhaus, G.Adv. Phys. 30, 139 (1981).Google Scholar
12Moran, M. J.Fischer, J. E. and Salaneck, W. R.J. Chem. Phys. 73, 629 (1980).CrossRefGoogle Scholar
Falardeau, E. R.Hanlon, L. R. and Thompson, T. E.Inorg. Chem. 17, 301 (1978).CrossRefGoogle Scholar
14Bartlett, N.McQuillan, B. and Robertson, A. S.Mater. Res. Bull. 13, 1259 (1978).CrossRefGoogle Scholar
15Plancon, A.Rousseaux, F.Tchoubar, D.Tchoubar, C.Krinari, G. and Drits, V. A.J. Appl. Crystallogr. 15, 509 (1982).CrossRefGoogle Scholar
16Rousseaux, F. Orleans, France (unpublished calculations).Google Scholar
17Ohana, I. and Yacoby, Y.Mater. Res. Soc. Symp. Proc. EA-8, 168 (1986).Google Scholar
18Selig, H.Vasile, M. J.Stevie, F. A. and Sunder, W. A.J. Fluorine Chem. 10, 299 (1977).CrossRefGoogle Scholar
19Milliken, J. W. and Fischer, J. E.J. Chem. Phys. 78, 5800 (1983).Google Scholar
20Sfihi, H.Thesis, Universite de Paris 7, 1983.Google Scholar
21Chenite, A. and Billaud, D.Carbon 20, 120 (1982).Google Scholar
22Pascal, P. in Nouveau Traite de Chimie Minerale (Masson, Paris, 1958), Vol. 11-1.Google Scholar
23Ebert, L. W.Mills, D. R.Scanlon, J. C. and Selig, H.Mater. Res. Bull. 16, 831 (1981).Google Scholar
24Brownstein, S.Can. J. Chem. 47, 605 (1969).Google Scholar
25Pentenrieder, R. and Boehm, H. P.Rev. Chim. Min. 19, 371 (1982).Google Scholar
26McRae, E.Mareche, J. F.Lelaurain, M.Furdin, G. and Herold, A.J. Phys. Chem. Solids 48, 957 (1987).Google Scholar
27Clarke, R.Elzinga, M.Gray, J. N.Homma, H.Morelli, D. T.Winokur, M. J. and Uher, C.Phys. Rev. B26, 5250 (1982).Google Scholar
28Hwang, D. M.Qian, X. W. and Solin, S. A.Phys. Rev. Lett. 53, 1473 (1984).Google Scholar
29Homma, H. and Clarke, R.Phys. Rev. B31, 5865 (1985).Google Scholar