Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T03:56:05.486Z Has data issue: false hasContentIssue false

Crystallization of ternary Zr-based glasses—Kinetics and microstructure

Published online by Cambridge University Press:  31 January 2011

G. K. Dey
Affiliation:
Materials Science Division, Bhabha Atomic Research Center, Trombay, Bombay 400 085, India
R. T. Savalia
Affiliation:
Materials Science Division, Bhabha Atomic Research Center, Trombay, Bombay 400 085, India
E. G. Baburaj
Affiliation:
Materials Science Division, Bhabha Atomic Research Center, Trombay, Bombay 400 085, India
S. Banerjee
Affiliation:
Materials Science Division, Bhabha Atomic Research Center, Trombay, Bombay 400 085, India
Get access

Extract

The effect of ternary addition on the thermal stability and the sequence and the kinetics of crystallization of metallic glasses Zr76Fe(24−x)Nix (x = 0, 4, 8, 12, 16, 20, 24) have been examined. It has been found that the surface crystallization occurs in the composition range 16 < x < 20, leading to the formation of an ordered Fe-rich (Fe, Ni)3Zr cubic phase, followed by the transformation of the bulk to a mixture of α−Zr and Zr2Ni. Crystallization of alloys containing 12 to 20% Fe occurs at lower temperatures by primary crystallization of Zr3(Fe, Ni), followed by decomposition of the remaining amorphous matrix by eutectic crystallization giving rise to α−Zr + Zr2Ni. At higher temperatures these alloys transform polymorphically to Zr3(Fe, Ni) in which Ni partially substitutes Fe in the Zr3Fe lattice. Copious nucleation of Zr3(Fe, Ni) phase in these alloys, leading to the formation of a nanophase structure, has been observed. This is consistent with the prediction of increasing nucleation rate for Fe-rich compositions. The crystal nucleation and growth kinetics have been examined for primary, eutectic, and polymorphic crystallization processes. The observed nucleation and growth behaviors have been rationalized by considering the role of the quenched in nuclei and the activation energies of nucleation and growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dong, Y.D., Gregan, G.G., and Scott, M.G., J. Non-Cryst. Solids 43, 403 (1981).CrossRefGoogle Scholar
2.Altounian, Z., Guo-Hua, Tu, and Strompsen, J.O., J. Appl. Phys. 54, 3111 (1983).CrossRefGoogle Scholar
3.Thomas, M., Scott, M.G., and Cahn, R.W., Proc. 5th Int. Conf. Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Elsevier, Amsterdam, 1985), p. 739.CrossRefGoogle Scholar
4.Buschow, K.H. J. and Beckmans, N.M., Phys. Rev. B 19, 3847 (1979).CrossRefGoogle Scholar
5.Buschow, K.H. J., Proc. Int. Conf. Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Elsevier, Amsterdam, 1985), p. 163.CrossRefGoogle Scholar
6.Dey, G.K., Baburaj, E.G., and Banerjee, S., J. Mater. Sci. 2, 117 (1986).CrossRefGoogle Scholar
7.Ghosh, G., Chandrasekaran, M., and Delaey, L., Acta Metall. Mater. 39, 37 (1991).CrossRefGoogle Scholar
8.Dey, G.K. and Banerjee, S., Mater. Sci. Eng. 73, 187 (1985).CrossRefGoogle Scholar
9.Dey, G.K. and Banerjee, S., Mater. Sci. Eng. 76, 2913 (1985).CrossRefGoogle Scholar
10.Chalka, A., Radlinski, A. P., and Luther-Davies, B., Scripta Metall. 21, 1445 (1987).Google Scholar
11.Dong, Y.D., Gregan, G., and Scott, M.G., J. Non-cryst. Solids 43, 403 (1981).CrossRefGoogle Scholar
12.Savalia, R. T., Tewari, R., Dey, G.K., and Banerjee, S., unpublished.Google Scholar
13.Ghosh, G., Chandrasekaran, M., and Delaey, L., Acta Metall. 39, 925 (1991).CrossRefGoogle Scholar
14.Köster, U., in Phase Transformations in Crystalline and Amor-phous Alloys, edited by Mordike, B. L. (Deutsche Gesellschaft f ür Metallkunde, Oberussel, 1983), p. 113.Google Scholar
15.Chalka, A. and Radlinski, A. P., Mater. Sci. Eng. 97, 241 (1988).Google Scholar
16.Greer, A. L., Nature 368, 688 (1994).CrossRefGoogle Scholar
17.Nagarajan, R. and Chattopadhyay, K., Acta Metall. Mater. 42, 947 (1994).CrossRefGoogle Scholar
18.Lu, K., Lück, R., and Predel, B., Acta Metall. 42, 2303 (1994).CrossRefGoogle Scholar
19.Inoue, A., Proc. 8th Int. Conf. Rapidly Quenched Metals, Materials Sci. Engg. A, 179–180, 57 (1994).Google Scholar
20.Savalia, R. T., Tewari, R., Dey, G.K., and Banerjee, S., Acta Metall. Mater. 44, (1), 5767 (1996).CrossRefGoogle Scholar
21.Morris, D.G., Acta Metall. Mater. 10, 1489 (1983).Google Scholar
22.Cahn, J.W. and Nutting, J., Trans. Metall. Soc. AIME 215, 526 (1959).Google Scholar
23.Malakhova, J.O. and Alekseyeva, Z.M., J. Less. Com. Met. 81, 293 (1981).CrossRefGoogle Scholar
24.Gorcia Esconial, A. and Greer, A. L., J. Mater. Sci. 22, 4388 (1987).CrossRefGoogle Scholar
25.Köster, U., Mater. Sci. Engg. 97, 233 (1988).CrossRefGoogle Scholar
26.Miedema, A.R., DeBoer, F.R. and de Chätel, P. F., J. Phys. F3, 1558 (1973).CrossRefGoogle Scholar
27.Miedema, A.R., Physica 1008, 1 (1980).Google Scholar
28.Gibson, M.A. and Delamore, G.W., Acta Metall. Mater. 38, 2621 (1990).CrossRefGoogle Scholar
29.Kissinger, H. E., Analyt. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
30.Chou, C. P. and Turnbull, D., J. Non-Cryst. Solids 17, 169 (1975).CrossRefGoogle Scholar
31.Kolmogorov, A.N., Bull. Acad. Sci. U.S.S.R. Phys. Ser. 3, 555 (1937).Google Scholar
32.Johnson, A.M. and Mehl, R. F., Trans. Am. Inst. Min. Metall. Pet. Engg. 135, 417 (1939).Google Scholar
33.Scott, M.G. and Ramachandrarao, P., Mater. Sci. Engg. 29, 137 (1977).CrossRefGoogle Scholar
34.Scott, MG., J. Mater. Sci. 13, 291 (1978).CrossRefGoogle Scholar
35.Scott, M.G., Amorphous Metallic Alloys (Butterworths, London, 1983), p. 144.CrossRefGoogle Scholar
36.Burke, J., The Kinetics of Phase Transformation in Metals and Alloys (Pergamon Press, Oxford, 1965), p. 433.Google Scholar
37.Gutzow, I. and Toschev, S., in Adv. Nucl. Crystall. Glasses, edited by Hench, L. L., 10 (1971).Google Scholar
38.Köster, U. and Herold, U., Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai, 1981, edited by Masumoto, T. and Suzuki, K. (Japan Institute of Metals, Sendai, 1982), p. 717.Google Scholar
39.Scott, M.G., Gregan, G., and Dong, Y.D., in Ref. 37, p. 671.Google Scholar
40.Blanke, H. and Köster, U., in Proc. of the Fifth Int. Conf. on Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H., Würzburg, Germany, Sept. 3–7, 1984 (Elsevier Science Publisher B.V., 1985), p. 227.Google Scholar
41.Christian, J.W., The Theory of Transformations in Metals and Alloys Part I (Pergaman Press, 1975).Google Scholar
42.Aaron, H.B., Fainstein, D., and Kotter, G.R., J. Appl. Phys. 41, 4404 (1970).CrossRefGoogle Scholar
43.Sharma, S.K., Banerjee, S., Kuldeep, , and Jain, A.K., J. Mater. Res. 4, 603 (1989).CrossRefGoogle Scholar
44.Greer, A. L., in Ref. 35, p. 215.CrossRefGoogle Scholar