Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T10:45:04.377Z Has data issue: false hasContentIssue false

Crystallization behavior in a low temperature acetate process for perovskite PbTiO3, Pb(Zr, Ti)O3, and (Pb1−x, Lax) (Zry, Ti1−y)1−x/4O3 bulk powders

Published online by Cambridge University Press:  31 January 2011

C.T. Lin*
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115-2862
B.W. Scanlan
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115-2862
J.D. McNeill
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115-2862
J.S. Webb
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115-2862
Li Li
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115-2862
R.A. Lipeles
Affiliation:
The Aerospace Corporation, P.O. Box 92957, Los Angeles, California 90009-2957
P.M. Adams
Affiliation:
The Aerospace Corporation, P.O. Box 92957, Los Angeles, California 90009-2957
M.S. Leung
Affiliation:
The Aerospace Corporation, P.O. Box 92957, Los Angeles, California 90009-2957
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

An aqueous, metallo-organic precursor for PbTiO3 (PT), Pb(Zr, Ti)O3 (PZT), and (Pb1−x, Lax) (Zry, Ti1−y)1−x/4O3 (PLZT) ceramic powders has been developed employing the acetate complexes of Pb2+, La3+, Zr4+, and Ti4+. The crystallization behavior (e.g., degree of crystallization and crystallite size) was examined over the temperature range of 400–700 °C with concentrations of excess lead varying from 0–5% using x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. It was found that PT, PZT, and PLZT crystallize at temperatures as low as 450 °C, 500 °C, and 500 °C, respectively, and the excess lead required for crystallization of the perovskite phase is ⋚1%. Intermolecular mixing among acetate precursors via chelating and bridging structures was evident and appeared to be responsible for the low crystallization temperatures. The process is compared to the current sol-gel methods for its possible use in thin film ferroelectric manufacture.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Roberts, H.N., Appl. Opt. 11, 397 (1972).CrossRefGoogle Scholar
2.Waterworth, P. and Chilton, G.A.A., Opto-electronics 4, 339 (1972).CrossRefGoogle Scholar
3.Ishida, M., Matsunami, H., and Tanaka, T., Appl. Phys. Lett. 31, 433 (1977).CrossRefGoogle Scholar
4.Land, C.E. and Thacher, P.D., Proc. IEEE 57, 751 (1969).CrossRefGoogle Scholar
5.Okada, A., J. Appl. Phys. 49, 4494 (1978).CrossRefGoogle Scholar
6.Krupanidhi, S. B., Maffei, N., Sayer, M., and El-Assal, K., J. Appl. Phys. 54, 6601 (1983).CrossRefGoogle Scholar
7.Budd, K. D., Dey, S. K., and Payne, D. A., Proc. Br. Ceram. Soc. 36, 107 (1985).Google Scholar
8.Vest, R. W. and Xu, J., Ferroelectric 93, 21 (1989).CrossRefGoogle Scholar
9.Haertling, G.H., “An Acetate Process for Bulk and Thin Film PLZT”, Proc. 1990 IEEE 7th Int. Symp. on the Applications of Ferroelectrics, University of Illinois at Urbana-Champaign, June 6–8, 1990, edited by Krupanidhi, S.B. and Kurtz, S.K. (IEEE Service Center, NJ), p. 292.Google Scholar
10.Mine, S. J. and Pyke, H., J. Am. Ceram. Soc. 74, 1407 (1991).Google Scholar
11.Tohge, N., Takahashi, S., and Minami, T., J. Am. Ceram. Soc. 74, 67 (1991).CrossRefGoogle Scholar
12.Lin, C. T., McNeill, J. D., Scanlan, B. W., Webb, J. S., Lipeles, R. A., and Leung, M. S., “Localized Laser Annealing of PT/PZT/PLZT Films Based on Metalloorganics in Aqueous Micellar Solutions”, Proc. 5th Int. Conf. on Ultrastructure Processing of Ceramics, Glasses, Composites, Ordered Polymers and Advanced Optical Materials, Orlando, FL, February 1721, 1991.Google Scholar
13.Lin, C. T., “Production of PT/PZT/PLZT Thin Films, Powders, and Laser ‘Direct Write’ Patterns”, U.S. patent filed on 5/30/91, serial no. 07/707.800.Google Scholar
14.Sanchez, C., Baronneay, F., Doeuff, S., and Leaustic, A., Chemical Modifications of Titanium Alkoxide Precursors, in Ultrastructure Processing of Advance Ceramics, edited by Mackenzie, J. D. and Ulrich, D.R. (John Wiley & Sons, Inc., New York, 1988), p. 77.Google Scholar
15.Doeuff, S., Henry, M., Sanchez, C., and Livage, J., J. Non-Cryst. Solids 89, 206 (1987).CrossRefGoogle Scholar
16.Mosset, A., Gautier-Luneau, I., Galy, J., Strehlow, P., and Schmidt, H., J. Non-Cryst. Solids 100, 339 (1988).CrossRefGoogle Scholar
17.Shaikh, A. S. and Vest, G. M., J. Am. Ceram. Soc. 69, 682 (1986).CrossRefGoogle Scholar
18.Schwartz, R.W. and Payne, D.A., in Better Ceramics Through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 199.Google Scholar
19.Chen, K. C., Janah, A., and Mackenzie, J. D., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 731.Google Scholar
20.Sanchez, C., Livage, J., Henry, M., and Babonneau, F., J. Non-Cryst. Solids 100, 65 (1988).CrossRefGoogle Scholar
21.Land, C.E. and Peercy, P.S., Ferroelectrics 45, 25 (1982).CrossRefGoogle Scholar
22.Lin, C.T., Lee, H.Y., Bitting, H.C., Lipeles, R.A., Tueling, M.B., and Leung, M. S., Chem. Phys. Lett. 174, 269 (1990).CrossRefGoogle Scholar
23.Nakamoto, K., Fujita, J., Tanaka, S., and Kobayashi, M., J. Am. Chem. Soc. 79, 4904 (1957).CrossRefGoogle Scholar
24.Kriegsmann, H. and Licht, K., Z. Elek. 62, 1163 (1958).Google Scholar
25.von Thiele, K.H. and Panse, M., Z. Anorg. Allz. Chem. 441, 23 (1978).CrossRefGoogle Scholar
26.McDevitt, N.T. and Baun, W.L., Spectrochim. Acta 20, 799 (1964).CrossRefGoogle Scholar
27.Lin, C.T., Li, Li, Webb, J.S., Lipeles, R.A., and Leung, M.S., “An Aqueous, Low Temperature Process for Synthesizing PZT (53,47) Thin Films”, Proc. 4th Int. Symp. on Integrated Ferroelectrics, Monterey, CA, March 911, 1992CrossRefGoogle Scholar