Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T13:03:23.204Z Has data issue: false hasContentIssue false

Crystallization and carbonization of an electrical discharge machined Zr-based bulk metallic glass alloy

Published online by Cambridge University Press:  11 November 2013

Shy-Feng Hsieh*
Affiliation:
Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan; and Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan
Sung-Long Chen
Affiliation:
Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan
Ming-Hong Lin
Affiliation:
Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan
Shih-Fu Ou*
Affiliation:
Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan; and Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan
Wei-Ting Lin
Affiliation:
Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan
Mao-Suan Huang*
Affiliation:
Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan; School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; and Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, Taipei 235, Taiwan
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

This study investigated the microstructure and machining characteristics of a Zr38.5Ti16.5Cu15.25Ni9.75Be20 bulk metallic glass (Zr-BMG) alloy machined using electro-discharge machining (EDM). After EDM, the hardening effect near the outer surface of the electro-discharge machined (EDMed) Zr-BMG alloy originated from the surface carbides of the recast layer, ZrC and TiC. The thickness of the recast layer, crater size, and the surface roughness increased with greater pulse energy. Furthermore, the EDM can generate a porous recast layer and convert the Zr-BMG alloy surface into a carbide surface, which is a potential method to fabricate biomaterials. Experimental results also show that the material removal rate of this alloy in the EDM process was significantly related to the pulse current IP and pulse duration τP. Many electro-discharge craters and recast materials were observed on the surface of the EDMed Zr-BMG alloy. The surface roughness of the EDMed Zr-BMG alloy was found to obey the empirical equation of Ra = β(IP × τP)α.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Huang, Y.J., Zheng, W., He, F., and Shen, J.: The temperature dependent dynamic mechanical response of a ZrCuNiAl bulk metallic glass. Mater. Sci. Eng., A 551, 100 (2012).CrossRefGoogle Scholar
Inoue, A., Fan, C., Saida, J., and Zhang, T.: High strength Zr-based bulk amorphous containing nanocrystalline and nanoquasicrystalline particles. Sci. Technol. Adv. Mater. 1, 73 (2000).CrossRefGoogle Scholar
Xing, L.Q., Görlor, G.P., and Herlach, D.M.: Cast bulk Zr57Ti5Al10Cu20Ni8 amorphous alloy with tendency of phase separation. Mater. Sci. Eng., A 226228, 429 (1997).CrossRefGoogle Scholar
Pecker, A. and Johnson, W.L.: A highly processable metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
Kyeong, J.S., Kim, D.H., Lee, J.I., and Park, E.S.: Effects of alloying elements with positive enthalpy of mixing in Mg65Cu25Gd10 bulk-forming metallic glasses. Intermetallics 31, 9 (2012).CrossRefGoogle Scholar
Laws, K.L., Shamlaye, K.F., Cao, J.D., Sciluna, J.P., and Ferry, M.: Locating new Mg-based bulk metallic glasses free of rare earth elements. J. Alloys Compd. 542, 105 (2012).CrossRefGoogle Scholar
Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).CrossRefGoogle Scholar
Bednarcik, J., Curfs, C., SiKorski, M., Franz, H., and Jiang, J.Z.: Thermal expansion of La-based BMG studied by in situ high-energy x-ray diffraction. J. Alloys Compd. 504S, S155 (2010).CrossRefGoogle Scholar
Hufnagel, T.C.: Preface to the viewpoint set on mechanical behavior of metallic glasses. Scr. Mater. 54, 317 (2006).CrossRefGoogle Scholar
Macht, M.P., Wanderka, N., Weil, Q., Sieber, I., and Deyneka, N.: Tendency of primary crystal formation in ZrTiCuNiBe metallic bulk glasses. Mater. Sci. Eng., A 304306, 701 (2001).CrossRefGoogle Scholar
Wang, G.Y., Landes, J.D., Peker, A., and Liaw, P.K.: Comments on “The fatigue-endurance limit of a Zr-based bulk metallic glass”. Scr. Mater. 57, 65 (2007).CrossRefGoogle Scholar
Hays, C.C., Kim, C.P., and Johnson, W.L.: Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater. Sci. Eng., A 304306, 650 (2001).CrossRefGoogle Scholar
Menzel, B.C. and Dauskrdt, R.H.: Stress-life fatigue behavior of a Zr-based bulk metallic glass. Acta Mater. 54, 935 (2006).CrossRefGoogle Scholar
Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).CrossRefGoogle Scholar
Dhawan, A., Sachdev, K., Roychowdhury, S., De, P.K., and Sharma, S.K.: Potentiodynamic polarization studies on amorphous Zr46.75Ti8.25Cu7.5Ni10Be27.5, Zr65Cu17.5Ni10Al7.5, Zr67Ni33 and Ti60Ni40 in aqueous HNO3 solution. J. Non-Cryst. Solids 353, 2619 (2007).CrossRefGoogle Scholar
Conner, R.D., Rosakis, A.J., Johnson, W.L., and Owen, D.M.: Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scr. Mater. 37, 1373 (1997).CrossRefGoogle Scholar
Lowhaphandu, P., Ludrosky, L.A., Montgomery, S.L., and Lewandowski, J.J.: Deformation and fracture toughness of a bulk amorphous Zr-Ti-Ni-Cu-Be alloy. Intermetallics 8, 487 (2000).CrossRefGoogle Scholar
Gilbert, C.J., Lipmann, J.M., and Ritchie, R.O.: Fatigue behavior of Zr-Ti-Ni-Cu- Be bulk amorphous metal: Stress/life and crack growth behavior. Scr. Mater. 38, 537 (1998).CrossRefGoogle Scholar
Kumar, G., Rector, D., Conner, R.D., and Schroers, J.: Embrittlement of Zr-based bulk metallic glasses. Acta Mater. 57, 3572 (2009).CrossRefGoogle Scholar
Chiu, H.O., Kumar, G., Blawzdziewicz, J., and Schroers, J.: Thermoplastic extrusion of bulk metallic glasses. Scr. Mater. 61, 28 (2009).CrossRefGoogle Scholar
Saotome, Y., Miwa, S., Zhang, T., and Inoue, A.: The micro-formability of Zr-based amorphous alloys in the supercooled liquid state and their application to micro-dies. J. Mater. Process. Technol. 113, 64 (2001).CrossRefGoogle Scholar
Chang, J.J., Cho, K.M., Chung, W.S., Kim, K.H., Chung, U.C., Park, J.H., and Cho, Y.R.: Effects of annealing on the mechanical properties of Zr-based bulk metallic glass for use in die application. Mater. Sci. Eng., A 396, 423 (2005).CrossRefGoogle Scholar
Schroers, J., Pham, Q., Peker, A., Paton, N., and Curtis, R.V.: Blow molding of bulk metallic glass. Scr. Mater. 57, 341 (2007).CrossRefGoogle Scholar
Weinert, K., Biermann, D., and Bergmann, S.: Machining of high strength light weight alloys for engine applications. CIRP J. Manuf. Sci. Technol. 56, 105 (2007).CrossRefGoogle Scholar
Huang, L., Cao, Z., Meyer, H.M., Liaw, P.K., Garlea, E., Dunlap, J.R., Zhang, T., and Heb, W.: Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness. Acta Biomater. 7, 395 (2011).CrossRefGoogle ScholarPubMed
Buzzi, S., Jin, K., Uggowitzer, P.J., Tosatti, S., Geber, I., and Löffler, J.F.: Cytotoxicity of Zr-based bulk metallic glasses. Intermetallics 14, 729 (2006).CrossRefGoogle Scholar
Chen, S.L.. Lin, M.H., Chen, C.C., and Ou, K.L.: Effect of electro-discharging on formation of biocompatible layer on implant surface. J. Alloys Compd. 456, 413 (2008).CrossRefGoogle Scholar
Zinelis, S.: Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM). Dent. Mater. 23, 607 (2007).CrossRefGoogle ScholarPubMed
Peng, P.W., Ou, K.L., Lin, H.C., Pan, Y.N., and Wang, C.H.: Effect of electrical-discharging formation of nanoporous biocompatible layer on titanium. J. Alloys Compd. 492, 625 (2010).CrossRefGoogle Scholar
Chen, X.H., Zhang, X.C., Zhang, Y., and Chen, G.L.: Fabrication and characterization of metallic glasses with a specific microstructure for micro-electro-mechanical system applications. J. Non-Cryst. Solids 354, 3308 (2008).CrossRefGoogle Scholar
Gadalla, A.M. and Bozkurt, B.: Expanding heat source model for thermal spalling of TiB2 in electrical discharge machining. J. Mater. Res. 7, 2853 (1992).CrossRefGoogle Scholar
Wu, J.J.: The machining characteristics of a TiNiAl ternary shape memory alloy using electro-discharge machining. Master’s thesis, Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2011.Google Scholar
Lin, H.C., Lin, K.M., and Cheng, I.C.: The electro-discharge machining characteristics of TiNi shape memory alloys. J. Mater. Sci. 36, 399 (2001).CrossRefGoogle Scholar
Jeswani, M.L.: Roughness and wear characteristics of spark-eroded surfaces. Wear 51, 227 (1978).CrossRefGoogle Scholar
Rebelo, J.C., Morao Dias, A., Kermer, D., and Lebrun, J.L.: Influence of EDM pulse energy on the surface integrity of martensitic steel. J. Mater. Process. Technol. 84, 90 (1998).CrossRefGoogle Scholar
Rebelo, J.C., Morao Dias, A., Kermer, D., and Lebrun, J.L.: An experimental study on electro-discharge machining and polishing of high strength copper-beryllium alloys. J. Mater. Process. Technol. 103, 389 (2000).CrossRefGoogle Scholar
Chu, C.L., Ji, H.L., Yin, L.H., Pu, Y.P., Lin, P.H., and Chu, P.K.: Fabrication, properties, and cytocompatibility of ZrC film on electropolished NiTi shape memory alloy. Mater. Sci. Eng., C 31, 423 (2011).CrossRefGoogle Scholar
Ding, M-H., Zhang, H-S., Zhang, C., and Jin, X.: Characterization of ZrC coatings deposited on biomedical 316L stainless steel by magnetron sputtering method. Surf. Coat. Technol. 224, 34 (2013).CrossRefGoogle Scholar
Shtansky, D.V., Gloushankova, N.A., Bashkova, I.A., Petrzhik, M.I., Sheveiko, A.N., Kiryukhantsev-Korneev, F.V., Reshetov, I.V., Grigoryan, A.S., and Levashov, E.A.: Multifunctional biocompatible nanostructured coatings for load-bearing implants. Surf. Coat. Technol. 201, 4111 (2006).CrossRefGoogle Scholar
Brama, M., Rhodes, N., Hunt, J., Ricci, A., Teghil, R., Migliaccio, S., Rocca, C.D., , S., Leccisotti, , Lioi, A., Scandurra, M., De Maria, G., Ferro, D., Pu, F., Panzini, G., Politi, L., and Scandurr, R.: Effect of titanium carbide coating on the osseointegration response in vitro and in vivo. Biomaterials 28(4), 595 (2007).CrossRefGoogle ScholarPubMed
Balázsi, K., Vandrovcová, M., Bačáková, L., and Balázsi, C.: Structural and biocompatible characterization of TiC/a:C nanocomposite thin films. Mater. Sci. Eng., C 33(3), 1671 (2013).CrossRefGoogle Scholar
Dibitonto, D.D.: Theoretical models of the electrical discharge machining process. I, simple cathode erosion model. J. Appl. Phys. 66, 4095 (1989).CrossRefGoogle Scholar