Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T17:43:53.225Z Has data issue: false hasContentIssue false

Crack progression and interface debonding in brittle/ductile nanoscale multilayers

Published online by Cambridge University Press:  03 March 2011

D.K. Leung
Affiliation:
Materials Department, College of Engineering, University of California. Santa Barbara, Santa Barbara, California 93106-5050
N.T. Zhang
Affiliation:
Materials Department, College of Engineering, University of California. Santa Barbara, Santa Barbara, California 93106-5050
R.M. McMeeking
Affiliation:
Materials Department, College of Engineering, University of California. Santa Barbara, Santa Barbara, California 93106-5050
A.G. Evans
Affiliation:
Materials Department, College of Engineering, University of California. Santa Barbara, Santa Barbara, California 93106-5050
Get access

Abstract

Crack initiation and progression have been studied in nanoscale brittle/ductile multilayers of Cu and Si. Variations in the interface debond energy on the cracking behavior have been examined by using thin interlayers comprising either Cr (strong interface) or Au (weak interface). For strongly bonded Cr interfaces, it has been found that cracks forming in the Si invariably extend through the Cu layers, despite the ductile rupture characteristics of the Cu. This behavior occurs even when the Cu layers comprise more than 70% of the multilayer volume. It also contrasts with the crack arrest capabilities exhibited by relatively thick ductile layers (∼10-100 μm). The disparity in behavior is attributed to the relatively large cracking strain required for the thin brittle layers. Weak Au interfaces result in debonding which, in turn, can suppress the propagation of cracks into adjacent layers. However, when the interface includes strongly bonded sections, the debond arrests, and often kinks into the attached Si. In this case, cracking still progresses sequentially through the Si layers. Careful control of the interface debond energy is needed to fully suppress crack progression in nanoscale multilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Microelectronics Packaging Handbook, edited by Tummala, R. R. and Rymaszewski, E.J. (Van Nostrand Reinhold, New York, 1989).Google Scholar
2Barbour, D. R., in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices, edited by Blum, J. B. and Cannon, W. R. (The American Ceramics Society, Westerville, OH, 1986).Google Scholar
3Freiman, S. W. and Gonzalez, A. C., in Advances in Ceramics, Vol. 19, Mulitlayer Ceramic Devices, edited by Blum, J. B. and Cannon, W. R. (The American Ceramics Society, Westerville, OH, 1986).Google Scholar
4Nix, W. D., Metall. Trans. A 20A (II), 22172245 (1989).CrossRefGoogle Scholar
5Hutchinson, J. W. and Suo, Z., Adv. Appl. Mech. 29, 63191(1992).CrossRefGoogle Scholar
6Ye, T., Suo, Z., and Evans, A. G., Int. J. Solids Struct. 29(21), 26392648 (1992).CrossRefGoogle Scholar
7Hu, M. S. and Evans, A. G., Acta Metall. 37(3), 917925 (1989).CrossRefGoogle Scholar
8Hu, M. S., Thouless, M. D., and Evans, A.G., Acta Metall. 36(5), 13011307 (1988).CrossRefGoogle Scholar
9Shaw, M. C., Marshall, D. B., Dadkhah, M. S., and Evans, A.G., Acta Metall. Mater. 41(11), 33113322 (1993).CrossRefGoogle Scholar
10He, M. Y., Heredia, F. E., Wissuchek, D. J., Shaw, M.C. and Evans, A.G., Acta Metall. Mater. 41(4), 12231228 (1993).CrossRefGoogle Scholar
11Cao, H. C. and Evans, A. G., Acta Metall. Mater. 39(12), 29973005 (1991).CrossRefGoogle Scholar
12Chan, K. S., He, M. Y., and Hutchinson, J. W., Mater. Sci. Eng. A 167 (1–2), 5764 (1993).CrossRefGoogle Scholar
13Ho, S. and Suo, Z., J. Appl. Mech. 60(4), 890894 (1993).CrossRefGoogle Scholar
14Leung, D. K., He, M. Y., and Evans, A. G., J. Mater. Res. 10, 1693 (1995).CrossRefGoogle Scholar
15Ashby, M. F. and Jones, D. R. H., Engineering Materials (Pergamon Press, London, 1980), p. 31.Google Scholar
16Metals Handbook, edited by Boyer, H. E. and Gall, T. L. (American Society for Metals, Metals Park, OH, 1985).Google Scholar
17Boyd, D. C. and Thompson, D. A., from Encyclopedia of Chemical Technology, 3rd ed. (John Wiley & Sons, New York, 1980), Vol. 11, pp. 807880.Google Scholar
18Beuth, J. L. Jr., Int. J. Solids Struc. 29(13), 16571675 (1992).CrossRefGoogle Scholar
19Maden, M. A. and Farris, R. J., Exp. Mech. 31(2), 178184 (1991).CrossRefGoogle Scholar
20Ghandhi, S. K., VLSI Fabrication Principles (John Wiley & Sons, New York, 1983).Google Scholar
21Ho, P. S. and Faupel, F., Appl. Phys. Lett. 53(17), 16021604 (1988).CrossRefGoogle Scholar
22Thomas, M. E., Hartnett, M. P., and McKay, J.E., J. Vac. Sci. Technol. A 6(4), 25702571 (1988).CrossRefGoogle Scholar
23Marz, M. D. and Dahlgren, S. D., J. Appl. Phys. 46(8), 32353237 (1975).CrossRefGoogle Scholar
24Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W., Acta Metall. Mater. 42, 475487 (1994).CrossRefGoogle Scholar
25Sigl, L. S., Mataga, P. A., Dalgleish, B. J., McMeeking, R. M., and Evans, A. G., Acta Metall. 36, 945 (1988).CrossRefGoogle Scholar
26Bagchi, A., Lucas, G. E., Suo, Z., and Evans, A.G., J. Mater. Res. 9, 17341741 (1994).CrossRefGoogle Scholar
27Bagchi, A., Ph.D. Dissertation, UCSB, May 1994; A. Bagchi and A. G. Evans, Thin Solid Films (in press).Google Scholar
28He, M-Y., Bartlett, A., Evans, A. G., and Hutchinson, J.W., J. Am. Ceram. Soc. 74(4), 767771 (1991).CrossRefGoogle Scholar
29He, M-Y. and Hutchinson, J.W., Int. J. Solids Struc. 25(9), 10531067 (1989).Google Scholar
30Curtin, W. A., J. Am. Ceram. Soc. 74, 2837 (1991).CrossRefGoogle Scholar
31Chiao, Y. H. and Clarke, D. R., Acta Metall. 37, 203 (1989).CrossRefGoogle Scholar