Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T19:29:48.687Z Has data issue: false hasContentIssue false

Correlation of nanoindentation-induced deformation microstructures in diamondlike carbon coatings on silicon substrates with simulation studies

Published online by Cambridge University Press:  31 January 2011

Mark Hoffman
Affiliation:
School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 Australia
Avi Bendavid
Affiliation:
CSIRO Materials Science and Engineering, Lindfield, NSW 2070 Australia
Get access

Abstract

The effect of the presence of diamondlike carbon coatings deposited on (100) Si substrates on the deformation mechanisms operating in the silicon substrate during contact loading have been investigated by both cross-sectional transmission electron microscopy and modeling of the stresses generated beneath the indenter tip. The observed subsurface microstructures were correlated to the Tresca shear stress and the hydrostatic stress generated in the silicon substrate beneath the indenter tip. The presence of the coating altered the stresses generated in the substrate, and changed the deformation mechanism from one of principally phase transformation in uncoated Si to predominantly dislocation motion in the silicon substrate for the diamondlike C–Si system. The magnitude and distribution of the shear and hydrostatic stresses in the substrate were found to depend on both the indentation load and the thickness of the coating. Furthermore, the observed width of deformation, parallel to the interface, which was found to increase with coating thickness, was correlated to the wider distribution of the Tresca shear stress in the substrate brought about by the presence of the coating.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F., Hockey, B.J.Amorphization and conductivity of silicon and germanium induced by indentation. Phys. Rev. Lett. 60, 2156 (1988)CrossRefGoogle ScholarPubMed
2.Pharr, G.M., Oliver, W.C., Clarke, D.R.Hysteresis and discontinuity in the indentation load–displacement behavior of silicon. Scr. Metall. 23, 1949 (1989)CrossRefGoogle Scholar
3.Pharr, G.M., Oliver, W.C., Harding, D.S.New evidence for a pressure-induced phase transformation during the indentation of silicon. J. Mater. Res. 6, 1129 (1991)CrossRefGoogle Scholar
4.Page, T., Oliver, W.C., McHargue, C.J.The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (1992)CrossRefGoogle Scholar
5.Callahan, D.L., Morris, J.C.The extent of phase transformation in silicon hardness indentations. J. Mater. Res. 7, 1614 (1992)CrossRefGoogle Scholar
6.Weppelmann, E.R., Field, J.S., Swain, M.V.Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters. J. Mater. Res. 8, 830 (1993)CrossRefGoogle Scholar
7.Page, T.F., Riester, L., Hainsworth, S.V.The plasticity response of 6H–SiC and related isostructural materials to nanoindentation: Slip versus densificationFundamentals of Nanoindentation and Nanotribology edited by N.R. Moody,W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc 522, Warrendale, PA 1998)113Google Scholar
8.Kailer, A., Gogotsi, Y.G., Nickel, K.G.Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057 (1997)CrossRefGoogle Scholar
9.Domnich, V., Gogotsi, Y., Dub, S.Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000)CrossRefGoogle Scholar
10.Zarudi, I., Zhang, L.C.Structure changes in monocrystalline silicon subjected to indentation-experimental findings. Tribol. Int. 32, 701 (1999)CrossRefGoogle Scholar
11.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., Munroe, P.Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 77, 3749 (2000)CrossRefGoogle Scholar
12.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., Munroe, P.Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16, 1500 (2001)CrossRefGoogle Scholar
13.Lloyd, S.J., Molina-Aldareguia, J.M., Clegg, W.J.Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy. J. Mater. Res. 16, 3347 (2001)CrossRefGoogle Scholar
14.Whitehead, A.J., Page, T.F.Nanoindentation studies of thin film coated systems. Thin Solid Films 220, 277 (1992)CrossRefGoogle Scholar
15.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johanson, H., Leipner, H.S.Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B: Condens. Matter 67, 172101 (2003)CrossRefGoogle Scholar
16.Knight, J.C., Whitehead, A.J., Page, T.F.Nanoindentation experiments on some amorphous hydrogenated carbon (a-C:H) thin films on silicon. J. Mater. Sci. 27, 3939 (1992)CrossRefGoogle Scholar
17.Hainsworth, S.V., Barlett, T., Page, T.F.The nanoindentation response of systems with thin hard carbon coatings. Thin Solid Films 236, 214 (1993)CrossRefGoogle Scholar
18.Page, T.F., Hainsworth, S.V.Using nanoindentation techniques for the characterization of coated systems: A critique. Surf. Coat. Technol. 61, 201 (1993)CrossRefGoogle Scholar
19.Berasategui, E.G., Page, T.F.The contact response of thin SiC-coated silicon systems-characterization by nanoindentation. Surf. Coat. Technol. 163–164, 491 (2003)CrossRefGoogle Scholar
20.Haq, A.J., Munroe, P.R., Hoffman, M., Martin, P.J., Bendavid, A.Nanoindentation-induced deformation behavior of diamond-like carbon coatings on silicon substrates. Thin Solid Films 515, 1000 (2006)CrossRefGoogle Scholar
21.Haq, A.J., Munroe, P.R., Hoffman, M., Martin, P.J., Bendavid, A.Deformation behavior of DLC coatings on (111) silicon substrates. Thin Solid Films 516, 267 (2006)CrossRefGoogle Scholar
22.Haq, A.J., Munroe, P.R., Hoffman, M., Martin, P.J., Bendavid, A.Berkovich indentation of diamondlike-carbon coatings on silicon substrates. J. Mater. Res. 23, 1862 (2008)CrossRefGoogle Scholar
23.Haq, A.J., Munroe, P.R., Hoffman, M., Martin, P.J., Bendavid, A.Effect of coating thickness on the deformation behavior of diamond-like carbon (DLC)–Si system. Thin Solid Films 518, 2021 (2010)CrossRefGoogle Scholar
24.Chudoba, T., Schwarzer, N.ELASTICA software package version 3 http://www.asmec.de/Google Scholar
25.Schwarzer, N., Whittling, M., Swain, M., Richter, F.The analytical solution of the contact problem of spherical indenters on layered materials: Application for the investigation of TiN films on silicon. Thin Solid Films 270, 371 (1995)CrossRefGoogle Scholar
26.Schwarzer, N., Chudoba, T., Billep, D., Richter, F.Investigation of coating substrate compounds using inclined spherical indentation. Surf. Coat. Technol. 116–119, 244 (1999)CrossRefGoogle Scholar
27.Schwarzer, N., Richter, F., Hecht, G.The elastic field in a coated half-space under Hertzian pressure distribution. Surf. Coat. Technol. 114, 292 (1999)CrossRefGoogle Scholar
28.Schwarzer, N.Arbitrary load distribution on a layered half space. J. Tribol. 122, 673 (2000)CrossRefGoogle Scholar
29.Chudoba, T., Schwarzer, N., Richter, F., Beck, U.Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter. Thin Solid Films 377–378, 366 (2000)CrossRefGoogle Scholar
30.Chudoba, T., Schwarzer, N., Linss, V., Richter, F.Determination of mechanical properties of graded coatings using nanoindentation. Thin Solid Films 469–470, 239 (2004)CrossRefGoogle Scholar
31.Chudoba, T., Schwarzer, N. ELASTICA software package version 3 help manual http://www.siomec.de/downloads/Elastica_Help.pdfGoogle Scholar
32.Palacio, J.F., Bull, S.J., Neidhardt, J., Hultman, L.Nanoindentation response of high performance fullerene-like CNx. Thin Solid Films 494, 63 (2006)CrossRefGoogle Scholar
33.Walter, C., Antretter, T., Daniel, R., Mitterer, C.Surf. Coat. Technol. 202, 1103 (2007)CrossRefGoogle Scholar
34.Wanstrand, O., Kassman-Rudolphi, A.E., Hogmark, S.Design of low weight components: A theoretical approach. Surf. Eng. 18, 93 (2002)CrossRefGoogle Scholar
35.Wanstrand, O., Schwarzer, N., Chudoba, T., Kassman-Rudolphi, A.E.Load carrying capacity of Ni plated media in spherical indentation: Experimental and theoretical results. Surf. Eng. 18, 98 (2002)CrossRefGoogle Scholar
36.Fontalvo, G.A., Daniel, R., Mitterer, C.Interlayer thickness influence on the trilobogical response of bi-layer coatings. Tribol. Int. 43, 108 (2010)CrossRefGoogle Scholar
37.Fujisawa, N., McKenzie, D.R., James, N.L., Woodard, J.C., Swain, M.V.Combined influences of mechanical properties and surface roughness on the tribological properties of amorphous carbon coatings. Wear 260, 62 (2006)CrossRefGoogle Scholar
38.Oliver, D.J., Bradby, J.E., Williams, J.S., Swain, M.V., Munroe, P.Thickness-dependent phase transformation in nanoindented germanium thin films. Nanotechnology 19, 475709 (2008)CrossRefGoogle ScholarPubMed
39.Malkow, T., Arce-Garcia, I., Kolitsch, A., Schneider, D., Bull, S.J., Page, T.F.Mechanical properties and characterisation of very thin CNx films synthesised by IBAD. Diamond Relat. Mater. 10, 2199 (2001)CrossRefGoogle Scholar
40.Li, X., Bhushan, B.Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques. Thin Solid Films 355–356, 330 (1999)CrossRefGoogle Scholar
41.Bhushan, B.Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments. Diamond Relat. Mater. 8, 1985 (1999)CrossRefGoogle Scholar
42.Oliver, W.C., Pharr, G.M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
43.Schwarzer, N., Chudoba, T., Pharr, G.M.On the evaluation of stresses in coated materials during nanoindentation with sharp indenters. Surf. Coat. Technol. 200, 4220 (2006)CrossRefGoogle Scholar
44.Chudoba, T., Schwarzer, N., Richter, F.Steps towards a mechanical modeling of layered systems. Surf. Coat. Technol. 154, 140 (2002)CrossRefGoogle Scholar
45.Field, J.S., Swain, M.V.A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993)CrossRefGoogle Scholar
46.Hu, J.Z., Merkle, L.D., Menoni, C.S., Spain, I.L.Crystal data for high-pressure phases of silicon. Phys. Rev. B: Condens. Matter 34, 4679 (1986)CrossRefGoogle ScholarPubMed
47.Gupta, M.C., Ruoff, A.L.Static compression of silicon in the [100] and in the [111] directions. J. Appl. Phys. 51, 1072 (1980)CrossRefGoogle Scholar
48.Gilman, J.J.Shear-induced metallization. Philos. Mag. B 67, 207 (1993)CrossRefGoogle Scholar
49.Haq, A.J.Deformation behavior of diamond-like carbon coatings on silicon substrates.Ph.D. Thesis University of New South Wales, Sydney, Australia (2008)Google Scholar
50.Beake, B.D., Lau, S.P.Nanotribological and nanomechanical properties of 5–80 nm tetrahedral amorphous carbon films on silicon. Diamond Relat. Mater. 14, 1535 (2005)CrossRefGoogle Scholar
51.Galvan, D., Pei, Y.T., De Hosson, J.Th.M.Deformation and failure mechanism of nano-composite coatings under nano-indentation. Surf. Coat. Technol. 200, 6718 (2006)CrossRefGoogle Scholar
52.Chen, C.Q., Pei, Y.T., Shaha, K.P., De Hosson, J.Th.M.Nanoscale deformation mechanism of TiC/a-C nanocomposite thin films. J. Appl. Phys. 105, 114314 (2000)CrossRefGoogle Scholar