Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T13:16:04.207Z Has data issue: false hasContentIssue false

The correlation between τɛ and the tolerance factor in (Sr, Ca) (Ti, Zr)O3 microwave dielectric ceramics

Published online by Cambridge University Press:  31 January 2011

Chae-Il Cheon
Affiliation:
Division of Materials and Chemical Engineering, Hoseo University, San 29-1, Sechul-Ri, Baebang-Myun, Asan-Si, Chungnam, 336-795, Korea
Jeong-Seog Kim
Affiliation:
Division of Materials and Chemical Engineering, Hoseo University, San 29-1, Sechul-Ri, Baebang-Myun, Asan-Si, Chungnam, 336-795, Korea
Hyeung-Gyu Lee
Affiliation:
Korea Electronics Technology Institute, 455-6, Masan-Ri, Jinwi-Myon, Pyungtaek-Si, Kyunggi-Do, 451-860, Korea
Get access

Abstract

Microwave dielectric properties and the relationship between the temperature coefficient of the dielectric constant (τ ɛ) and the tolerance factor were investigated in (Sr0.2Ca0.8) (Ti1–xZrx)O3 ceramics. The τɛ increased linearly as the tolerance factor decreased from 0.984 to 0.929 in the whole composition range of the (Sr0.2Ca0.8) (Ti1–xZrx)O3 solid solution. At the composition of (Sr0.2Ca0.8) (Ti0.04Zr0.96)O3, the dielectric constant was 34 and Q · f was 10,938 GHz and the temperature coefficient of the resonance frequency (τɛ) was supposed to be near zero.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wersing, W., in High Frequency Ceramic Dielectrics and their Application for Microwave Components: Electronic Ceramics, edited by Steele, B. C. H. (Elsevier, London, 1991), pp. 67119.Google Scholar
2.Colla, E. L., Reaney, I. M., and Setter, N., J. Appl. Phys. 74, 3414 (1993).CrossRefGoogle Scholar
3.Onoda, M., Kuwata, J., Kaneta, K., Toyama, K., and Nomura, S., Jpn. J. Appl. Phys. 21, 1707 (1982).CrossRefGoogle Scholar
4.Furuya, M. and Ochi, A., Jpn. J. Appl. Phys. 33, 5482 (1994).CrossRefGoogle Scholar
5.Takahashi, H., Baba, Y., Ezaki, K., Okamoto, Y., Shibata, K., Kuroki, K., and Nakano, S., Jpn. J. Appl. Phys. 30, 2339 (1991).CrossRefGoogle Scholar
6.Kato, J., Kagata, H., and Nishimoto, K., Jpn. J. Appl. Phys. 30, 2343 (1991).CrossRefGoogle Scholar
7.Haga, K., Ishii, T., Mashiyama, J., and Ikeda, T., Jpn. J. Appl. Phys. 31, 3156 (1992).CrossRefGoogle Scholar
8.Kucheito, S., Choi, J. W., Kim, H. J., and Jung, H. J., J. Am. Ceram. Soc. 79, 2739 (1996).CrossRefGoogle Scholar
9.Kell, R. C., Greenham, A. C., and Olds, G. C. E., J. Am. Ceram. Soc. 56, 352 (1973).CrossRefGoogle Scholar
10.Reaney, I. M., Colla, E. L., and Setter, N., Jpn. J. Appl. Phys. 33, 3984 (1994).CrossRefGoogle Scholar
11.Joseph, J., Vimala, T. M., Raju, K. C. J., and Murthy, V. R. K., Jpn. J. Appl. Phys. 35, 179 (1996).CrossRefGoogle Scholar
12.Jaffe, B., Cook, W. R. Jr., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London and New York, 1971), p. 50.Google Scholar
13.Megaw, H. D., Crystal Structures: A Working Approach (W. B. Saunders Company, London, 1973), p. 293.Google Scholar
14.Glazer, A. M., Acta Crystallogr. B28, 3384 (1972).CrossRefGoogle Scholar
15.Glazer, A. M., Acta Crystallogr. A31, 756 (1975).CrossRefGoogle Scholar
16.Hakki, B. W. and Coleman, P. D., IRE Trans. Microwave Theory & Tech. 8, 402 (1960).CrossRefGoogle Scholar