Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T00:34:21.002Z Has data issue: false hasContentIssue false

Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method

Published online by Cambridge University Press:  31 January 2011

Song Han
Affiliation:
Department of Electrical Engineering—Electrophysics, University of Southern California, Los Angeles, California 90089–0271
Wu Jin
Affiliation:
Department of Electrical Engineering—Electrophysics, University of Southern California, Los Angeles, California 90089–0271
Tao Tang
Affiliation:
Department of Electrical Engineering—Electrophysics, University of Southern California, Los Angeles, California 90089–0271
Chao Li
Affiliation:
Department of Electrical Engineering—Electrophysics, University of Southern California, Los Angeles, California 90089–0271
Daihua Zhang
Affiliation:
Department of Electrical Engineering—Electrophysics, University of Southern California, Los Angeles, California 90089–0271
Xiaolei Liu
Affiliation:
Department of Electrical Engineering—Electrophysics, University of Southern California, Los Angeles, California 90089–0271
Jie Han
Affiliation:
Eloret Corporation, NASA Ames Research Center, Mountain View, California 94035
Chongwu Zhou
Affiliation:
Department of Electrical Engineering—Electrophysics, University of Southern California, Los Angeles, California 90089–0271
Get access

Abstract

Chemical vapor deposition (CVD) using gold nanoparticles as the catalyst to grow high-quality single-crystal gallium nitride nanowires was developed. This method enables control over several important aspects of the growth, including control of the nanowire diameter by using monodispersed gold clusters, control of the nanowire location via e-beam patterning of the catalyst sites, and control of the nanowire orientation via epitaxial growth ona-plane sapphire substrates. Our work opens up new ways to use GaN nanowires as nanobuilding blocks.

Type
Rapid-Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morkoc, H., Nitride Semiconductors and Devices (Springer Verlag, Heidelberg, Germany, 1999).CrossRefGoogle Scholar
Nakamura, S., Science 281, 956 (1998).CrossRefGoogle Scholar
Choa, F., Fan, J., and Liu, P., Appl. Phys. Lett. 69, 3668 (1996).CrossRefGoogle Scholar
Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Sugimoto, Y., and Kikoyu, H., Jpn. J. Appl. Phys., Part 2 36, L1059 (1997).Google Scholar
Chamard, V., Metzger, T., Bellet-Amalric, E., Daudin, B., Adelmann, C., Mariette, H., Mula, G., Appl. Phys. Lett. 79, 1971 (2001).CrossRefGoogle Scholar
Tran, C., Osinski, A., Karlicek, R., and Berishev, I., Appl. Phys. Lett. 75, 1494 (1999).CrossRefGoogle Scholar
Xiao, R., Liao, H., Cue, N., Sun, X., and Kwok, H., J. Appl. Phys. 80, 4226 (1996).CrossRefGoogle Scholar
Xie, Y., Qian, Y., Wang, W., Zhang, S., and Zhang, Y., Science 272, 1926 (1996).Google Scholar
Huang, Y., Duan, X., Cui, Y., and Lieber, C., Nano Lett. 2, 101 (2002).Google Scholar
Duan, X. and Lieber, C., J. Am. Chem. Soc. 122, 188 (2000).Google Scholar
Shi, W., Zheng, Y., Wang, N., Lee, C., and Lee, S., Adv. Mater. 13, 591 (2001).Google Scholar
Han, W., Redlich, P., Ernst, F., Rühle, M., Appl. Phys. Lett. 76, 652 (2000).CrossRefGoogle Scholar
Han, W., Fan, S., Li, Q., and Hu, Y., Science 277, 1287 (1997).CrossRefGoogle Scholar
Chen, G., Zhang, L., Zhu, Y., Fei, G., Li, L., Mo, C., and Mao, Y., Appl. Phys. Lett. 75, 2455 (1999).CrossRefGoogle Scholar
Peng, H., Zhou, X., Wang, N., Zheng, Y., Liao, L., Shi, W., Lee, C., and Lee, S., Chem. Phys. Lett. 327, 263 (2000).CrossRefGoogle Scholar
Chen, C. and Yeh, C., Adv. Mater. 12, 738 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
Chen, X., Li, J., Cao, Y., Lan, Y., Li, H., He, M., Wang, C., Zhang, Z., and Qiao, Z., Adv. Mater. 12, 1432 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
He, M., Minus, I., Zhou, P., Mohammed, S., Halpern, J., Jacobs, R., Sarney, W., Salamanca-Riba, L., and Vispute, R., Appl. Phys. Lett. 77, 3731 (2000).CrossRefGoogle Scholar
Chen, C.C., Yeh, C.H., Chen, C.H., Yu, M., Liu, H., Wu, J., Chen, K.H., Chen, L.C., Peng, J., and Chen, Y.F., J. Am. Chem. Soc. 123, 2791 (2001).CrossRefGoogle Scholar
Chang, K. and Wu, J., J. Phys. Chem. B 106, 7796 (2002).CrossRefGoogle Scholar
Kim, J.R., So, H., Park, J., Kim, J.J., Kim, J., Lee, C., and Lyu, S., S. Appl. Phys. Lett. 80, 3548 (2002).Google Scholar
Alivisatos, A., Science 271, 933 (1996).CrossRefGoogle Scholar
Gudiksen, M., Wang, J., and Lieber, C., J. Phys. Chem. B 106, 4036 (2002).CrossRefGoogle Scholar
Cui, Y., Lauhon, L., Gudiksen, M., Wang, J., and Lieber, C., Appl. Phys. Lett. 78, 2214 (2001).CrossRefGoogle Scholar
Kong, J., Soh, H., Cassell, A., Quate, C., and Dai, H., Nature 395, 878 (1998).Google Scholar
Huang, M., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).CrossRefGoogle Scholar