Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:34:34.283Z Has data issue: false hasContentIssue false

Control of interfacial reactions and strength of the SiC/SiC joints brazed with newly-developed Co-based brazing alloy

Published online by Cambridge University Press:  31 January 2011

Hua-Ping Xiong*
Affiliation:
Laboratory of Welding and Forging, Beijing Institute of Aeronautical Materials, Beijing 100095, People’s Republic of China
Wei Mao
Affiliation:
Laboratory of Welding and Forging, Beijing Institute of Aeronautical Materials, Beijing 100095, People’s Republic of China
Yong-Hui Xie
Affiliation:
Laboratory of Welding and Forging, Beijing Institute of Aeronautical Materials, Beijing 100095, People’s Republic of China
Bo Chen
Affiliation:
Laboratory of Welding and Forging, Beijing Institute of Aeronautical Materials, Beijing 100095, People’s Republic of China
Wan-Lin Guo
Affiliation:
Laboratory of Welding and Forging, Beijing Institute of Aeronautical Materials, Beijing 100095, People’s Republic of China
Xiao-Hong Li
Affiliation:
Laboratory of Welding and Forging, Beijing Institute of Aeronautical Materials, Beijing 100095, People’s Republic of China
Yao-Yong Cheng
Affiliation:
Laboratory of Welding and Forging, Beijing Institute of Aeronautical Materials, Beijing 100095, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Co-based brazing alloy CoFeNi(Si, B)CrTi was designed for SiC joining. The periodic banded reaction structure that existed at the interface between SiC and the traditional Ni-based or Co-based braze has been eliminated by the new brazing alloy. The maximum room-temperature four-point bend strength of 161 MPa was achieved for SiC/SiC joint under the optimum brazing condition of brazing filler thickness of 120 μm, brazing temperature of 1150 °C, and brazing time of 10 min. The corresponding reaction layer of the SiC/SiC joint is composed of multilayer silicides and TiC band, and many small TiC particles are scattered throughout the matrix of the central part of the joint. The joints thus exhibit stable high-temperature strength. It is believed that the formation of TiC in the joint contributes not only to the elimination of the periodic banded reaction structure, but also to the high joint strength and the high-temperature stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dapkunas, S.J.: Ceramic heat exchangers. Am. Ceram. Soc. Bull. 67, 388 1988Google Scholar
2Magnani, G., Beaulardi, L., Mingazzini, C.Marmo, E.: Mo-based compounds for SiC-SiC joints. Key Eng. Mater. 206–213, 583 2002Google Scholar
3Jones, R.H., Henager, C.H. Jr.: Fusion reactor application issues for low activation SiC/SiC composites. J. Nucl. Mater. 219, 55 1995CrossRefGoogle Scholar
4Ferraris, M.Badini, C.: Montorsi, Appendino P, Scholz HW. Joining of SiCf/SiC composites for thermonuclear. J. Nucl. Mater. 212-215, 1613 1994CrossRefGoogle Scholar
5Kuramada, A., Imamura, Y., Tomota, Y., Oku, T., Kubota, Y.Noda, N.: Evaluation of the integrity of diverter models of tungsten or SiC/SiC composites jointed with copper. J. Nucl. Mater. 313–316, 245 2003CrossRefGoogle Scholar
6Jones, R.H., Giancarli, L., Hasegawa, A., Katoh, Y., Kohyama, A., Riccardi, B., Snead, L.L.Weber, W.J.: Promise and challenges of SiCf/SiC composites for fusion energy applications. J. Nucl. Mater. 307–311, 1057 2002Google Scholar
7Loehman, R.E.Tomsia, A.P.: Joining of ceramics. Am. Ceram. Soc. Bull. 67(2), 375 1988Google Scholar
8Suganuma, K., Okamoto, T., Miyamoto, Y., Shimada, M.Koizumi, M.: Joining Si3N4 to type 405 steel with soft metal interlayers. Mater. Sci. Technol. 2, 1156 1986Google Scholar
9Kang, S., Dunn, E.M., Seleverian, J.H.Kim, H.J.: Issues in ceramic-to-metal joining: an investigation of brazing a silicon nitride-based ceramic to a low-expansion superally. Ceram. Bull. 68(9), 1608 1989Google Scholar
10Yamada, T., Sekiguchi, H., Okamoto, H., Azuma, S., Kitamura, A.Fukaya, K.: Diffusion bonding SiC or Si3N4 to Nimonic 80A. High Temp. Technol. 5(4), 193 1987CrossRefGoogle Scholar
11Chen, J.H., Wang, G.Z., Nogi, K., Kamai, M., Sato, N.Iwamoto, N.: The metallurgical behaviour during brazing of Ni-base alloy Inconel 600 to Si3N4 with Ag71Cu27Ti2 filler metal. J. Mater. Sci. 28, 2933 1993Google Scholar
12Lee, W.C.: Joint strength and interfacial microstructure in silicon nitride/nickel-based Inconel 718 alloy bonding. J. Mater. Sci. 32, 221 1997CrossRefGoogle Scholar
13Bates, C.H., Foley, M.R., Rossi, G.A., Sundberg, G.J.Wu, F.J.: Joining of non-oxide ceramics for high-temperature applications. Am. Ceram. Soc. Bull. 69(3), 350 1990Google Scholar
14Martinelli, A.E., Hadian, A.M.Drew, R.A.L.: A review on joining non-oxide ceramics to metals. J. Can. Ceram. Soc. 66(4), 276 1997Google Scholar
15Nicholas, M.G.Mortimer, D.A.: Ceramic/metal joining for structural applications. Mater. Sci. Technol. 1, 657 1985Google Scholar
16Loehman, R.E., Tomsia, A.P., Pask, J.A.Johnson, S.M.: Bonding mechanism in silicon nitride brazing. J. Am. Ceram. Soc. 73(3), 552 1990Google Scholar
17Tomsia, A.P., Pask, J.A.Loehman, R.E.: Joining of ceramics with Ag-Cu-Ti brazing alloy. Ceram. Eng. Sci. Proc. 10, 1631 1989CrossRefGoogle Scholar
18Naka, M., Tanaka, T.Okamoto, I.: Joining of silicon nitride using amorphous Cu-Ti filler metal. Trans. JWRI 16, 83 1987Google Scholar
19Nishino, T.Urai, S.: Interface microstructure and strength of SiC/SiC joint brazed with Cu-Ti alloys. Eng. Fract. Mech. 40, 829 1991CrossRefGoogle Scholar
20Lee, H.K.Lee, J.Y.: A study of the wetting, microstructure and bond strength in brazing SiC by Cu-X(X=Ti, V, Nb, Cr) alloys. J. Mater. Sci. 31, 4133 1996Google Scholar
21Lopez-Cuevas, J., Jones, H.Atkinson, H.V.: The effect of surface preoxidation of sintered silicon carbide on its wettability by silver-copper based brazing alloys in vacuo. Mater. Sci. Eng., A 266, 161 1999Google Scholar
22Suganuma, K., Okamoto, T., Koizumi, M.Shimada, M.: Joining of silicon nitride to silicon nitride and to Invar alloy using an aluminium interlayer. J. Mater. Sci. 22, 1359 1987CrossRefGoogle Scholar
23Xian, A.P.Si, Z.Y.: Interlayer design for joining pressureless sintered sialon ceramic and 40Cr steel brazing with Ag57Cu38Ti5 filler metal. J. Mater. Sci. 27, 1560 1992CrossRefGoogle Scholar
24Kim, J.H.Yoo, Y.C.: Microstructure and bond strength of Ni-Cr steel/Si3N4 joint brazed with Ag-Cu-Zr alloy. Mater. Sci. Technol. 14, 352 1998CrossRefGoogle Scholar
25Naka, M., Kubo, M.Okamoto, I.: Brazing of Si3N4 to metals with Al-Cu filler metals. Trans. JWRI 19(1), 33 1990Google Scholar
26Xiong, H.P., Wan, C.G.Zhou, Z.F.: Development of a new CuNiTiB brazing alloy for joining Si3N4 to Si3N4. Metall. Mater. Trans. A 29, 2591 1998Google Scholar
27Reichel, U.Warlimont, H.: Rapidly solidified CoTi Alloys as brazing foils for high-temperature joining of silicon nitride ceramic. Z. Metallkd. 90(9), 699 1999Google Scholar
28Paulasto, M., Ceccone, G., Peteves, S.D., Voitovich, R.Eustathopoulos, N.: Brazing of Si3N4 with Au-Ni-V-Mo filler alloy. Ceram. Trans. 77, 91 1997Google Scholar
29Kang, S.Kim, H.J.: Design of high-temperature brazing alloys for ceramic-metal joints. Weld. J. 74(9), 289s 1995Google Scholar
30Tillmann, W., Lugscheider, E., Schlimbach, K., Manter, C.Indacochea, J.E.: Heat-resistant active brazing of silicon nitride, part 2: Metallurgical characterization of the braze joint. Weld. J. 77, 103s 1998Google Scholar
31Okamura, H.: Brazing ceramics and metals. Weld. J. Int. 7(3), 236 1993CrossRefGoogle Scholar
32Selverian, J.H.Kang, S.: Ceramic to metal joints brazed with palladium alloys. Weld. J. 71, 25 1992Google Scholar
33Tillmann, W., Lugscheider, E., Schlimbach, K., Manter, C.Indacochea, J.E.: Heat-resistant active brazing of silicon nitride, part 1: Mechanical evaluation of braze joints. Weld. J. 76, 300 1997Google Scholar
34Hadian, A.M.Drew, R.A.L.: Strength and microstructure of silicon nitride ceramics brazed with nickel-chromium-silicon alloys. J. Am. Ceram. Soc. 79(3), 659 1996CrossRefGoogle Scholar
35Ceccone, G., Nicholas, M.G., Peteves, S.D., Kodentsov, A.A., Kivilahti, J.K.van Loo, F.J.J.: The brazing of Si3N4 with Ni-Cr-Si alloys. J. Eur. Ceram. Soc. 15, 563 1995Google Scholar
36Naka, M., Taniguchi, H.Okamoto, I.: Heat-resistant brazing of ceramics (report). Trans. JWRI 19(1), 25 1990Google Scholar
37Riccardi, B., Nannetti, C.A., Woltersdorf, J., Pippel, E.Petrisor, T.: Joining of SiCf/SiC composites. J. Mater. Sci. 37, 5029 2002CrossRefGoogle Scholar
38McDermid, J.R.Drew, R.A.L.: Thermodynamic brazing alloy design for joining silicon carbide. J. Am. Ceram. Soc. 74(8), 1855 1991CrossRefGoogle Scholar
39McDermid, J.R., Pugh, M.D.Drew, R.A.L.: The interaction of reacion-bonded silicon carbide and Inconel 600 with a nickel-based brazing alloy. Metall. Mater. Trans., A 20, 1803 1989Google Scholar
40Mehan, R.L.Mckee, D.W.: Interaction of metals and alloys with silicon-based ceramics. J. Mater. Sci. 11, 1009 1976Google Scholar
41Mehan, R.L.Bolon, R.B.: Interaction between silicon carbide and a nickel-based superalloy at elevated temperatures. J. Mater. Sci. 14, 2471 1979Google Scholar
42Jackson, M.R., Mehan, R.L., Davis, A.M.Hall, E.L.: Solid state SiC/Ni alloy reaction. Metall. Trans. A 14, 355 1983Google Scholar
43Chou, T.C.: Interfacial debonding by solid-state reactions of SiC with Ni and Co. Scripta Metall. Mater. 29, 255 1993CrossRefGoogle Scholar
44Schiepers, R.C.J., Van Loo, F.J.J.De With, G.: Reactions between α-silicon carbide ceramic and nickel or iron. J. Am. Ceram. Soc. 71(6), C-284 1988CrossRefGoogle Scholar
45Tang, W.M., Zheng, Z.X., Ding, H.F.Jin, Z.H.: A study of the solid state reaction between silicon carbide and iron. Mater. Chem. Phys. 74, 258 2002Google Scholar
46Liu, C.X.: Study on zirconium getter for diffusion welding. In New Advances in Welding and Allied Processes, Proceedings of the International Conference, 8–10 May 1991, Beijing, China, edited by the Welding Institution of the Chinese Mechanical Engineering Society and Deutscher Verband fur Schweisslechnik e. V., International Academic Publishers 1991 345Google Scholar
47Xiong, H.P., Li, X.H., Mao, W.Cheng, Y.Y.: Wetting behavior of Co based active brazing alloys on SiC and the interfacial reactions. Mater. Lett. 57, 3417 2003CrossRefGoogle Scholar
48Park, J.S., Landry, K.Perepezko, J.H.: Kinetic control of silicon carbide/metal reactions. Mater. Sci. Eng., A 259, 279 1999Google Scholar
49Gulpen, J.H., Kodentsov, A.A.Loo, F.J.J.: Growth of Silicides in Ni-SiC bulk diffusion couples. Z. Metallkd. 86(8), 530 1995Google Scholar
50Seng, F.W.Barnes, P.A.: Calculations of cobalt silicide and carbide formation on SiC using the Gibbs free energy. Mater. Sci. Eng., B 76, 225 2000CrossRefGoogle Scholar
51Chang, S.L., Jung, S.H., Jung, H.R., Keun, H.A., In-Tae, B., Manabu, I., Yashihiko, H.: Interface formation and phase distribution induced by Co/SiC solid state reactions. Mater. Trans. 43(5), 1225 2002Google Scholar
52Lim, C.S., Nickel, H., Naoumidis, A.Gyarmati, E.: Interface structure and reaction kinetcis between SiC and thick cobalt foils. J. Mater. Sci. 31, 4241 1996CrossRefGoogle Scholar
53Backhaus-Ricoult, M.: Solid state reactions between silicon carbide and (Fe, Ni, Cr)-alloys:reaction paths, kinetics and morphology. Acta Metall Mater. 40(Suppl.), S95 1992Google Scholar
54JCPDS No. 48-1339 Ni2Si International Center for Diffraction Data: Newton Square, PA, 1993Google Scholar
55JCPDS No. 50-1337 CoSi International Center for Diffraction Data: Newton Square, PA, 1997Google Scholar
56JCPDS No. 7-186 Cr3Si International Center for Diffraction Data: Newton Square, PA, 1956Google Scholar
57JCPDS No. 45-1207 Fe3Si International Center for Diffraction Data: Newton Square, PA, 1979Google Scholar
58JCPDS No. 35-783 Cr23C6 International Center for Diffraction Data: Newton Square, PA, 1984Google Scholar
59JCPDS No. 32-1383 TiC International Center for Diffraction Data: Newton Square, PA, 1981Google Scholar
60JCPDS No. 26-1076 C International Center for Diffraction Data: Newton Square, PA, 1974Google Scholar
61JCPDS No. 29-1131 SiC. International Center for Diffraction Data: Newton Square, PA, 1969Google Scholar
62Nicholas, M.G.: Overview Joining of Ceramics, edited by Nicholas MG. Chapman and Hall 1990 1Google Scholar
63Belousov, I.Rudenko, E.: Local Nucleation and Lateral Crystallisation of the Silicide Phases in CoSi2 Buffer Layer of YBCO/CoSi2/Si Structure., Materials for Advanced Metallization 1997Google Scholar
64Kamo, R.Bryzik, W.: Properties of binary compounds. Ceram. Eng. Sci. Proc. 5, 312 1984Google Scholar
65Gotman, I.Gutmanas, E.Y.: Microstructure and thermal stability of coated Si3N4 and SiC. Acta Metall. Mater. 40(suppl.), S121 1992Google Scholar