Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:08:11.441Z Has data issue: false hasContentIssue false

Containerless solidification studies of the α–1/1 crystal approximant in Ti–Cr–Si–O alloys

Published online by Cambridge University Press:  31 January 2011

T. K. Croat
Affiliation:
Department of Physics, Washington University, Box 1105, Saint Louis, Missouri 63130
K. F. Kelton
Affiliation:
Department of Physics, Washington University, Box 1105, Saint Louis, Missouri 63130
D. Holland-Moritz
Affiliation:
Institut für Raumsimulation, Deutsches Zentrum für Luft und Raumfahrt, Linder Höhe, D-51147, Köln, Germany, and Division of Engineering and Applied Sciences, Harvard University, Gordon McKay Laboratory, 9 Oxford Street, Cambridge, Massachusetts 02138
T. J. Rathz
Affiliation:
University of Alabama, Huntsville, Alabama 35899
M. B. Robinson
Affiliation:
Space Sciences Laboratory, NASA/Marshall Space Flight Center, Huntsville, Alabama 35812
Get access

Abstract

The nucleation behavior of α(TiCrSiO), a 1/1 Fibonacci crystal approximant phase, was investigated in alloys made near the stoichiometric composition. Containerless solidification studies were made with electromagnetic radio-frequency levitation and the 105-m NASA Drop Tube. The solidification microstructures indicate that the α–Ti hexagonal solid solution was the primary crystallizing phase in these alloys, growing dendritically. The α(TiCrSiO) phase nucleated in the remaining liquid. The competition between these two phases resulted from the high oxygen concentration needed to form α(TiCrSiO), which also stabilized the hexagonal-close-packed α–Ti phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Libbert, J.L., Kelton, K.F., Goldman, A.I., and Yellon, W., Phys. Rev. B 49, 11675 (1994).CrossRefGoogle Scholar
2.Goldman, A.I. and Kelton, K.F., Rev. Mod. Phys. 65, 213 (1993).CrossRefGoogle Scholar
3.Elser, V. and Henley, C.L., Phys. Rev. Lett. 55, 2883 (1985).CrossRefGoogle Scholar
4.Libbert, J.L. and Kelton, K.F., Philos. Mag. Lett. 71, 153 (1995).CrossRefGoogle Scholar
5.Holzer, J.C. and Kelton, K.F., Acta Metall. Mater. 39, 1833 (1991).CrossRefGoogle Scholar
6.Holland-Moritz, D., Schroers, J., and Urban, K., Acta Mater. 46, 1601 (1998).CrossRefGoogle Scholar
7.Frank, F.C., Proc. R. Soc. London, Ser. A 215, 43 (1952).Google Scholar
8.Rathz, T.J., Robinson, M.B., Hofmeister, W.H., and Bayuzick, R.J., Rev. Sci. Instrum. 61, 3846 (1990).CrossRefGoogle Scholar
9.Croat, T.K., Kelton, K.F., Holland-Moritz, D., Rathz, T.J., and Robinson, M.B., in Quasicrystals, edited by Dubois, J-M., Thiel, P.A., Tsai, A-P., and Urban, K. (Mater. Res. Soc. Symp. Proc. 553, Warrendale, PA, 1999), p. 43.Google Scholar
10.Lau, C.F. and Kui, H.W., Acta Metall. Mater. 41, 1999 (1993).CrossRefGoogle Scholar